Effect typing

Sam Lindley

The University of Edinburgh

SPLV 2024

Effect polymorphism

To support flexible composition of effectful programs we need* effect polymorphism.

Effect polymorphism

To support flexible composition of effectful programs we need* effect polymorphism.

Example: choice and failure

maybeFail : Ve.Al(e w {fail : a.1 - a}) = Maybe Ale
allChoices : Ve.Al(e W {choose : 1 — Bool}) = List Ale

Effect polymorphism

To support flexible composition of effectful programs we need* effect polymorphism.

Example: choice and failure

maybeFail : Ve.Al(e w {fail : a.1 - a}) = Maybe Ale
allChoices : Ve.Al(e W {choose : 1 — Bool}) = List Ale

With explicit type applications we may write:
handle (handle drunkTosses 2 with maybeFail {choose : 1 — Bool}) with allChoices)
or

handle (handle drunkTosses 2 with allChoices {fail : a.1 — a}) with maybeFail (

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types /1 : A1,,0 : A,

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types /1 : A1,,0 : A,
Row polymorphism supports abstracting over the rest of a row type: £: A1,....¢: An;p

There can be at most one row variable in a row type

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types /1 : A1,,0 : A,
Row polymorphism supports abstracting over the rest of a row type: £: A1,....¢: An;p
There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types /1 : A1,,0 : A,
Row polymorphism supports abstracting over the rest of a row type: £: A1,....¢: An;p
There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names

Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type
A (Pre(A)) or absent (Abs)

Duplicate labels disallowed

Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type
A (Pre(A)) or absent (Abs)

Duplicate labels disallowed
Example:
maybeFail : V(e : Rowyg,iy), (p : Presence).
Al({fail : (a: Type).1 — a; e}) = Maybe Al{fail : p; e}

allChoices : V(e : Rowcpoose}), (p : Presence).
Al(e W {choose : 1 — Bool; e}) = List Al{choose : p; e}

Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times
at different types

Duplicate labels allowed; order of duplicates matters

Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times
at different types

Duplicate labels allowed; order of duplicates matters
Example:
maybeFail : V(e : Row).
Al({fail : (a: Type).1 — a; e}) = Maybe Al{; e}

allChoices : V(e : Row).
Al(e W {choose : 1 — Bool; e}) = List Al{; e}

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition
Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1 — Bool} Abs)
with allChoices () Abs

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition
Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1 — Bool} Abs)
with allChoices () Abs

Leijen style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1 — Bool})
with allChoices ()

Example: abstracting over an exception handler
Rémy style:

catch : (1 — bl{fail : 3.1 — a;e}) — (1 — b!{fail : p; e}) — bl{fail : p; e}
catch m h = handle m() with
return x — x

(fail ()) — h()

Example: abstracting over an exception handler
Rémy style:

catch : (1 — bl{fail : 3.1 — a;e}) — (1 — b!{fail : p; e}) — bl{fail : p; e}
catch m h = handle m() with
return x — x

(fail ()) — h()

If h can itself fail then p is instantiated to Pre(a.1 — a)

Example: abstracting over an exception handler
Rémy style:

catch : (1 — bl{fail : 3.1 — a;e}) — (1 — b!{fail : p; e}) — bl{fail : p; e}
catch m h = handle m() with
return x — x

(fail ()) — h()
If h can itself fail then p is instantiated to Pre(a.1 — a)
Leijen style:
catch : (1 — b!{fail : a.1 - a;e}) — (1 — b!{; e}) — b!{; e}

catch m h = handle m() with
return x — x

(fail ()) > h ()

Example: abstracting over an exception handler
Rémy style:

catch : (1 — bl{fail : 3.1 — a;e}) — (1 — b!{fail : p; e}) — bl{fail : p; e}
catch m h = handle m() with
return x — x

(fail ()) — h()
If h can itself fail then p is instantiated to Pre(a.1 — a)
Leijen style:
catch : (1 — b!{fail : a.1 - a;e}) — (1 — b!{; e}) — b!{; e}

catch m h = handle m() with
return x — x

(fail ()) — h()

If h can itself fail then e is instantiated to (fail : a.1 — a; €’) for some €', which means
the type of mis (1 — b!{fail : a.1 — a, fail : a.1 — a; €'})

Invisible effect polymorphism

Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Invisible effect polymorphism

Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 — blfail : a.1 — a;e}) — (1 — b!{; e}) — b!{; e}
map : (a — b!{; e}) — List a — List b!{; e}

Invisible effect polymorphism

Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):
catch : (1 — blfail : a.1 — a;e}) — (1 — b!{; e}) — b!{; e}
map : (a — b!{; e}) — List a — List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 — bl{fail : .1 - a}) — (1 — b!{}) — b!{}
map : (a — b!{}) — List a — List b!{}

Invisible effect polymorphism

Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):
catch : (1 — blfail : a.1 — a;e}) — (1 — b!{; e}) — b!{; e}
map : (a — b!{; e}) — List a — List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 — bl{fail : .1 - a}) — (1 — b!{}) — b!{}
map : (a — b!{}) — List a — List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 — b!{fail : 2.1 » a}) - (1 = b) — b
map : (a — b) — List a — List b

Invisible effect polymorphism

Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):
catch : (1 — blfail : a.1 — a;e}) — (1 — b!{; e}) — b!{; e}
map : (a — b!{; e}) — List a — List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 — bl{fail : .1 - a}) — (1 — b!{}) — b!{}
map : (a — b!{}) — List a — List b!{}

And further that empty polymorphic effects need not be written at all:
catch : (1 — b!{fail : 2.1 » a}) - (1 = b) — b
map : (a — b) — List a — List b

We do now need to use explicit syntax to denote a closed row (), but with row-based
effect typing closed rows are uncommon

Effect pollution example

Handlers

reads : List Nat — a!{get : 1 — Nat} = al{fail : a.1 — a}

reads([]) = returnx +— x reads(n: ns) =returnx +— x
(get () — r) — fail () (get() = ry— rnsn

maybeFail : b!{fail : a.1 — a} = Maybe b
maybeFail = return x — Just x
(fail () — r) — Nothing

Effect pollution example

bad : List b — (1 — b'{get : 1 — Nat, fail : a.1 - a}) — Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

Effect pollution example

bad : List b — (1 — b'{get : 1 — Nat, fail : a.1 - a}) — Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (A().get () + fail ()) : Maybe Nat = Nothing

Effect pollution example

bad : List b — (1 — b'{get : 1 — Nat, fail : a.1 - a}) — Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (A().get () + fail ()) : Maybe Nat = Nothing

How can we encapsulate the use of fail as an intermediate effect?

Effect pollution example

bad : List b — (1 — b'{get : 1 — Nat, fail : a.1 - a}) — Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (A().get () + fail ()) : Maybe Nat = Nothing

How can we encapsulate the use of fail as an intermediate effect?
The aim is to define
good : List b — (1 — b!{get : 1 — Nat}) — Maybe b
by composing reads and maybeFail such that
good [1, 2] (A().get () + fail ()) : Maybe Nat!{fail : a.1 — a}

performs the fail operation.

Effect encapsulation

Two solutions to the effect pollution problem:
» Mask the intermediate effect (only works for Leijen-style row-typing)

good : List b — (1 — b!{get : 1 — Nat}) — Maybe b
good ns t = handle (handle ((fail) (t())) with reads ns) with maybeFail

Frank, Koka, and Helium support this approach.
[Biernacki, Pirég, Polesiuk, Sieczkowski, POPL 2018, “Handle with care”]
[Convent, Lindley, McBride, McLaughlin, JFP 2019, “Doo bee doo bee doo”]

» Add support for fresh effects

Helium and Links support this approach.
[Biernacki, Pirég, Polesiuk, Sieczkowski, POPL 2019, “Abstracting algebraic

effects”]

Effect masking

A;THM: AR}

AT (op) M: Al{op: B— C;R}

Akin to weakening for effects

Doo bee doo bee doo

Shall | be pure or impure?
—Philip Wadler

A value is. A computation does.
—~Paul Blain Levy

‘To be is to do'—Socrates.
‘To do is to be'—Sartre.
‘Do be do be do'—Sinatra.
—anonymous graffiti, via Kurt Vonnegut

Frank

[Lindley, McBride, McLaughlin, POPL 2017, “Do be do be do”]
[Convent, Lindley, McBride, McLaughlin, JFP 2019, “Doo bee doo bee doo”]

Frank is an unequivocally effect handler oriented research programming language

Key features include:
» invisible effect polymorphism
» call-by-handling
» multihandlers
» adjustments
> adaptors (a generalisation of mask)

Probably a misfeature: unusual syntax

CEK

RT::Z:TI Lin h S Machine

Query (Server)
Shredding http://www.links-lang.org
Lo . CPS
Linking theory to practice Translation
DATABASE for the web EFFECT (Client)
Language- INTEGRATION HANDLERS
Integrated
Query
@ o0 @ Row-based
Effects
Provenance
'WEB INTERACTIVE : .
i DEVELOPMENT PROGRAMMING With thanRs to Simon Fowler
HTML +
antiquotes

Notebook -
Programming ﬁ 5

‘ TryLinks ;ﬁ
=

Formlets
Model-
View-
Update

Handlers in Links and Frank (demo)

Demos

Effect typing scalability challenges

Effect encapsulation
Linearity
Generativity
Indexed effects

Equations

