
Algebraic effects and effect handlers

Sam Lindley

The University of Edinburgh

SPLV 2024

Quiz

What is an effect?

What is a pure computation?

What is an effectful computation?

Quiz

What is an effect?

What is a pure computation?

What is an effectful computation?

Quiz

What is an effect?

What is a pure computation?

What is an effectful computation?

Quiz

What is an effect?

What is a pure computation?

What is an effectful computation?

Effects

Programs as black boxes (Church-Turing model)?

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), WasmFX, ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), WasmFX, ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), WasmFX, ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), WasmFX, ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), WasmFX, ...

Effect handlers as composable user-defined operating systems

Effect handlers as composable user-defined operating systems

Pure computations

Effectful computations

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .

A command-response tree (aka interaction tree)

Effectful computation is all about interaction with some context

Effectful computations

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .

A command-response tree (aka interaction tree)

Effectful computation is all about interaction with some context

Example: boolean state (bit toggling)

get : Bool
puttt : 1
putff : 1

get

putff

tt

()

tt

puttt

ff

()

ff

Example: natural number state (increment)

get : N
puti : 1, i ∈ N

get

put1

()

()

0

puti+1

()

()

i

.

Example: nondeterminism (drunk coin toss)

choose : Bool
fail : 0

choose

choose

Heads

tt

Tails

ff

tt

fail

ff

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .

Equivalently (ignoring edge labels)

m ::= return v | op ⟨m1, . . . , mk⟩

Equivalently (accounting for edge labels)

m ::= return v | op (λx .case x {v1 7→ m1; . . . ; vk 7→ mk})

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .

Equivalently (ignoring edge labels)

m ::= return v | op ⟨m1, . . . , mk⟩

Equivalently (accounting for edge labels)

m ::= return v | op (λx .case x {v1 7→ m1; . . . ; vk 7→ mk})

What is an effectful computation?

::= v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

op
v1 vk

. . .

Equivalently (ignoring edge labels)

m ::= return v | op ⟨m1, . . . , mk⟩

Equivalently (accounting for edge labels)

m ::= return v | op (λx .case x {v1 7→ m1; . . . ; vk 7→ mk})

Examples

Boolean state
toggle = get ⟨putff ⟨return tt⟩, puttt ⟨returnff⟩⟩

let s = get () in put (not s); s

Natural number state

increment = get ⟨put1 ⟨return ()⟩, . . . , puti+1 ⟨return ()⟩, . . .⟩

put (1 + get ())

Nondeterminism

drunkToss = choose ⟨choose ⟨returnHeads, returnTails⟩, fail⟨⟩⟩

if choose () then (if choose () then Heads else Tails) else absurd (fail ())

Examples

Boolean state
toggle = get ⟨putff ⟨return tt⟩, puttt ⟨returnff⟩⟩

let s = get () in put (not s); s

Natural number state

increment = get ⟨put1 ⟨return ()⟩, . . . , puti+1 ⟨return ()⟩, . . .⟩

put (1 + get ())

Nondeterminism

drunkToss = choose ⟨choose ⟨returnHeads, returnTails⟩, fail⟨⟩⟩

if choose () then (if choose () then Heads else Tails) else absurd (fail ())

Examples

Boolean state
toggle = get ⟨putff ⟨return tt⟩, puttt ⟨returnff⟩⟩

let s = get () in put (not s); s

Natural number state

increment = get ⟨put1 ⟨return ()⟩, . . . , puti+1 ⟨return ()⟩, . . .⟩

put (1 + get ())

Nondeterminism

drunkToss = choose ⟨choose ⟨returnHeads, returnTails⟩, fail⟨⟩⟩

if choose () then (if choose () then Heads else Tails) else absurd (fail ())

Command-response trees as free monads

▶ A computation of type comp A is a tree whose leaves have type A

▶ Return is return

▶ Bind perfoms substitution at the leaves

return v >>= r = r v
op ⟨m1, . . . , mn⟩>>= r = op ⟨m1 >>= r , . . . , mn >>= r⟩

Algebraic effects

An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state

Signature
get : Bool
puttt : 1
putff : 1

Equations
puts ⟨puts′ ⟨m⟩⟩ ≃ puts′ ⟨m⟩ (put-put)

puts ⟨get ⟨mtt,mff⟩⟩ ≃ puts ⟨ms⟩ (put-get)
get ⟨puttt ⟨m⟩, putff ⟨m⟩⟩ ≃ m (get-put)

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩ ≃ get ⟨m, n⟩ (get-get)

Algebraic effects

An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state

Signature
get : Bool
puttt : 1
putff : 1

Equations
puts ⟨puts′ ⟨m⟩⟩ ≃ puts′ ⟨m⟩ (put-put)

puts ⟨get ⟨mtt,mff⟩⟩ ≃ puts ⟨ms⟩ (put-get)
get ⟨puttt ⟨m⟩, putff ⟨m⟩⟩ ≃ m (get-put)

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩ ≃ get ⟨m, n⟩ (get-get)

Algebraic effects

An algebraic effect is given by

1. a signature of operations

2. a collection of equations

Example: boolean state

Signature
get : Bool
puttt : 1
putff : 1

Equations
puts ⟨puts′ ⟨m⟩⟩ ≃ puts′ ⟨m⟩ (put-put)

puts ⟨get ⟨mtt,mff⟩⟩ ≃ puts ⟨ms⟩ (put-get)
get ⟨puttt ⟨m⟩, putff ⟨m⟩⟩ ≃ m (get-put)

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩ ≃ get ⟨m, n⟩ (get-get)

Aside: the (get-get) equation is redundant

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩

≃ (get-put)
get ⟨puttt ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩, putff ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨get ⟨m,m′⟩⟩, putff ⟨get ⟨n′, n⟩⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨m⟩, putff ⟨n⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨get ⟨m, n⟩⟩, putff ⟨get ⟨m, n⟩⟩⟩

≃ (get-put)
get ⟨m, n⟩

Aside: the (get-get) equation is redundant

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩
≃ (get-put)

get ⟨puttt ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩, putff ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨get ⟨m,m′⟩⟩, putff ⟨get ⟨n′, n⟩⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨m⟩, putff ⟨n⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨get ⟨m, n⟩⟩, putff ⟨get ⟨m, n⟩⟩⟩

≃ (get-put)
get ⟨m, n⟩

Aside: the (get-get) equation is redundant

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩
≃ (get-put)

get ⟨puttt ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩, putff ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨get ⟨m,m′⟩⟩, putff ⟨get ⟨n′, n⟩⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨m⟩, putff ⟨n⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨get ⟨m, n⟩⟩, putff ⟨get ⟨m, n⟩⟩⟩

≃ (get-put)
get ⟨m, n⟩

Aside: the (get-get) equation is redundant

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩
≃ (get-put)

get ⟨puttt ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩, putff ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨get ⟨m,m′⟩⟩, putff ⟨get ⟨n′, n⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨m⟩, putff ⟨n⟩⟩

≃ (put-get)× 2
get ⟨puttt ⟨get ⟨m, n⟩⟩, putff ⟨get ⟨m, n⟩⟩⟩

≃ (get-put)
get ⟨m, n⟩

Aside: the (get-get) equation is redundant

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩
≃ (get-put)

get ⟨puttt ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩, putff ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨get ⟨m,m′⟩⟩, putff ⟨get ⟨n′, n⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨m⟩, putff ⟨n⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨get ⟨m, n⟩⟩, putff ⟨get ⟨m, n⟩⟩⟩

≃ (get-put)
get ⟨m, n⟩

Aside: the (get-get) equation is redundant

get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩
≃ (get-put)

get ⟨puttt ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩, putff ⟨get ⟨get ⟨m,m′⟩, get ⟨n′, n⟩⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨get ⟨m,m′⟩⟩, putff ⟨get ⟨n′, n⟩⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨m⟩, putff ⟨n⟩⟩
≃ (put-get)× 2

get ⟨puttt ⟨get ⟨m, n⟩⟩, putff ⟨get ⟨m, n⟩⟩⟩
≃ (get-put)

get ⟨m, n⟩

Interpreting algebraic effects
Example: boolean state

Standard interpretation (JcompAK = Bool→ JAK× Bool)

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Discard interpretation (JcompAK = Bool→ JAK)

Jreturn vK = λs.JvK
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Logging interpretation (JcompAK = Bool→ JAK× List Bool)

Jreturn vK = λs.(JvK, [s])
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.let (x , ss)← JmKs ′ in (x , s :: ss)

Interpreting algebraic effects
Example: boolean state

Standard interpretation (JcompAK = Bool→ JAK× Bool)

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Discard interpretation (JcompAK = Bool→ JAK)

Jreturn vK = λs.JvK
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Logging interpretation (JcompAK = Bool→ JAK× List Bool)

Jreturn vK = λs.(JvK, [s])
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.let (x , ss)← JmKs ′ in (x , s :: ss)

Interpreting algebraic effects
Example: boolean state

Standard interpretation (JcompAK = Bool→ JAK× Bool)

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Discard interpretation (JcompAK = Bool→ JAK)

Jreturn vK = λs.JvK
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Logging interpretation (JcompAK = Bool→ JAK× List Bool)

Jreturn vK = λs.(JvK, [s])
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.let (x , ss)← JmKs ′ in (x , s :: ss)

Example: boolean state, standard interpretation

JcompAK = Bool→ JAK× Bool

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Sound and complete with respect to the equations

m ≃ n ⇐⇒ JmK = JnK

Bit toggling
JtoggleK = λs.if s then (tt,ff) else (ff, tt)

Example: boolean state, discard interpretation

JcompAK = Bool→ JAK

Jreturn vK = λs.JvK
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Sound with respect to the equations

m ≃ n =⇒ JmK = JnK

Not complete because:
Jputs ⟨return v⟩K = Jreturn vK

Bit toggling
JtoggleK = λs.if s then tt elseff = λs.s

Example: boolean state, logging interpretation

JcompAK = Bool→ JAK× List Bool

Jreturn vK = λs.(JvK, [s])
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.let (x , ss)← JmKs ′ in (x , s :: ss)

Complete with respect to the equations

m ≃ n ⇐= JmK = JnK

Not sound because:

Jputs ⟨puts′ ⟨m⟩⟩K ̸= Jputs′ ⟨m⟩K
Jget ⟨puttt ⟨m⟩, putff ⟨n⟩⟩K ̸= Jget ⟨m, n⟩K

Bit toggling
JtoggleK = λs.if s then (tt, [tt,ff]) else (ff, [ff, tt])

Algebraic effects without equations

Different interpretations are useful in practice

So we will adopt free algebraic effects — no equations

Algebraic computations are command-response trees modulo equations

Abstract computations are plain command-response trees

Different interpretations give different meanings to the same abstract computation

Interpretations as effect handlers
Example: boolean state — standard interpretation

Meta level interpretation (enumerated continuations)

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Meta level interpretation (continuations as functions)

Jreturn vK = λs.(JvK, s)
Jget kK = λs.Jk sK s

Jputs′ kK = λs.Jk ()K s ′

Object level effect handler
return v 7→ λs.(v , s)
⟨get ()→ r⟩ 7→ λs.r s s
⟨put s ′ → r⟩ 7→ λs.r () s ′

Interpretations as effect handlers
Example: boolean state — standard interpretation

Meta level interpretation (enumerated continuations)

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Meta level interpretation (continuations as functions)

Jreturn vK = λs.(JvK, s)
Jget kK = λs.Jk sK s

Jputs′ kK = λs.Jk ()K s ′

Object level effect handler
return v 7→ λs.(v , s)
⟨get ()→ r⟩ 7→ λs.r s s
⟨put s ′ → r⟩ 7→ λs.r () s ′

Interpretations as effect handlers
Example: boolean state — standard interpretation

Meta level interpretation (enumerated continuations)

Jreturn vK = λs.(JvK, s)
Jget ⟨m, n⟩K = λs.if s thenJmKs else JnKs
Jputs′ ⟨m⟩K = λs.JmKs ′

Meta level interpretation (continuations as functions)

Jreturn vK = λs.(JvK, s)
Jget kK = λs.Jk sK s

Jputs′ kK = λs.Jk ()K s ′

Object level effect handler
return v 7→ λs.(v , s)
⟨get ()→ r⟩ 7→ λs.r s s
⟨put s ′ → r⟩ 7→ λs.r () s ′

Interpretations as effect handlers
Example: nondeterminism

Meta level interpretation (enumerated continuations)

Jreturn vK = [JvK]
Jchoose ⟨m, n⟩K = JmK ++ JnK

Jfail ⟨⟩K = []

Meta level interpretation (continuations as functions)

Jreturn vK = [JvK]
Jchoose kK = Jk ttK ++ Jk ffK

Jfail kK = []

Object level effect handler

return v 7→ [v]
⟨choose ()→ r⟩ 7→ r tt ++ r ff
⟨fail ()→ r⟩ 7→ []

Interpretations as effect handlers
Example: nondeterminism

Meta level interpretation (enumerated continuations)

Jreturn vK = [JvK]
Jchoose ⟨m, n⟩K = JmK ++ JnK

Jfail ⟨⟩K = []

Meta level interpretation (continuations as functions)

Jreturn vK = [JvK]
Jchoose kK = Jk ttK ++ Jk ffK

Jfail kK = []

Object level effect handler

return v 7→ [v]
⟨choose ()→ r⟩ 7→ r tt ++ r ff
⟨fail ()→ r⟩ 7→ []

Interpretations as effect handlers
Example: nondeterminism

Meta level interpretation (enumerated continuations)

Jreturn vK = [JvK]
Jchoose ⟨m, n⟩K = JmK ++ JnK

Jfail ⟨⟩K = []

Meta level interpretation (continuations as functions)

Jreturn vK = [JvK]
Jchoose kK = Jk ttK ++ Jk ffK

Jfail kK = []

Object level effect handler

return v 7→ [v]
⟨choose ()→ r⟩ 7→ r tt ++ r ff
⟨fail ()→ r⟩ 7→ []

Parameterised operations (term parameters)

For convenience we write

op : A↠ B instead of opi : B, i ∈ A

and to perform an operation:

op i instead of opi

For uniformity we parameterise all operations in effect signatures.

Examples

natural number state {put : Nat↠ 1, get : 1↠ Nat}
boolean state {put : Bool↠ 1, get : 1↠ Bool}
nondeterminism {choose : 1↠ Bool, fail : 1↠ 0}

Parameterised operations (term parameters)

For convenience we write

op : A↠ B instead of opi : B, i ∈ A

and to perform an operation:

op i instead of opi

For uniformity we parameterise all operations in effect signatures.

Examples

natural number state {put : Nat↠ 1, get : 1↠ Nat}
boolean state {put : Bool↠ 1, get : 1↠ Bool}
nondeterminism {choose : 1↠ Bool, fail : 1↠ 0}

Parameterised operations (term parameters)

For convenience we write

op : A↠ B instead of opi : B, i ∈ A

and to perform an operation:

op i instead of opi

For uniformity we parameterise all operations in effect signatures.

Examples

natural number state {put : Nat↠ 1, get : 1↠ Nat}
boolean state {put : Bool↠ 1, get : 1↠ Bool}
nondeterminism {choose : 1↠ Bool, fail : 1↠ 0}

Parametric operations (type parameters)

It can be useful to parameterise an operation by one or more types.

Example: nondeterminism

{choose : 1↠ Bool, fail : 1↠ 0}

becomes
{choose : 1↠ Bool, fail : a.1↠ a}

and

if choose () then (if choose () then Heads else Tails) else absurd (fail ())

becomes

if choose () then (if choose () then Heads else Tails) else fail ()

Example: choice and failure

Effect signature
{choose : 1↠ Bool, fail : a.1↠ a}

Drunk coin tossing

toss () = if choose () then Heads else Tails

drunkToss () = if choose () then
if choose () then Heads else Tails

else
fail ()

drunkTosses n = if n = 0 then []
else drunkToss () :: drunkTosses (n − 1)

Example: choice and failure

Effect signature
{choose : 1↠ Bool, fail : a.1↠ a}

Drunk coin tossing

toss () = if choose () then Heads else Tails

drunkToss () = if choose () then
if choose () then Heads else Tails

else
fail ()

drunkTosses n = if n = 0 then []
else drunkToss () :: drunkTosses (n − 1)

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒

[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Example: choice and failure
Handlers

maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice = — linear handler
return x 7→ x
⟨choose ()→ r⟩ 7→ r tt

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices = — non-linear handler
return x 7→ [x]
⟨choose ()→ r⟩ 7→ r tt ++ r ff

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

handle (handle drunkTosses 2 with maybeFail) with allChoices =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

Operational semantics

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H ⇝ N[V /x]

handle E [op V] with H ⇝ Nop[V /p, (λx .handle E [x] with H)/r], op # E

where
where H = return x 7→ N

⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H

Typing rules
Effects

E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

Exercise: Adapt the typing rules to accommodate parametric operations

Typing rules
Effects

E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

Exercise: Adapt the typing rules to accommodate parametric operations

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations

▶ A generalisation of an exception handler
▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

Example: cooperative concurrency (parameterised handler)
Effect signature

{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (parameterised handler)
Effect signature

{yield : 1↠ 1}
Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (parameterised handler)
Effect signature

{yield : 1↠ 1}
Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (parameterised handler)
Effect signature

{yield : 1↠ 1}
Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (parameterised handler)
Effect signature

{yield : 1↠ 1}
Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler — parameterised handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()

Helpers
coopWith t = λrs.λ().handle t () with coop rs
cooperate ts = coopWith id (map coopWith ts) ()

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Operational semantics (parameterised handlers)

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H W ⇝ N[V /x ,W /h]

handle E [op V] with H W ⇝ Nop[V /p, W /h, (λh x .handle E [x] with H h)/r], op # E

where H h = return x 7→ N
⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H W

Exercise: express parameterised handlers as deep handlers

Operational semantics (parameterised handlers)

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H W ⇝ N[V /x ,W /h]

handle E [op V] with H W ⇝ Nop[V /p, W /h, (λh x .handle E [x] with H h)/r], op # E

where H h = return x 7→ N
⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H W

Exercise: express parameterised handlers as deep handlers

Typing rules (parameterised handlers)
Effects

E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ V : P Γ ⊢ H : P → C ⇒ D

Γ ⊢ handle M with H V : D

Γ, h : P, x : A ⊢ N : D
[opi : Ai ↠ Bi ∈ E]i [Γ, h : P, p : Ai , r : P → Bi → D ⊢ Ni : D]i

Γ ⊢ λh.return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: P → A!E ⇒ D

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}

A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}
A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()
⟨ufork ()→ r ′⟩ 7→ r ′ [λrs ().r ′ rs ff]

tt

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()
⟨ufork ()→ r ′⟩ 7→ r ′ (r :: rs ++ [λrs ().r ′ rs ff])

tt

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}
A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()
⟨ufork ()→ r ′⟩ 7→ r ′ [λrs ().r ′ rs ff]

tt

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()
⟨ufork ()→ r ′⟩ 7→ r ′ (r :: rs ++ [λrs ().r ′ rs ff])

tt

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}
A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()
⟨ufork ()→ r ′⟩ 7→ r ′ [λrs ().r ′ rs ff]

tt

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()
⟨ufork ()→ r ′⟩ 7→ r ′ (r :: rs ++ [λrs ().r ′ rs ff])

tt

cooperate [main] =⇒ ()
M1 A1 M2 B1 A2 M3 B2

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}
A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()
⟨ufork ()→ r ′⟩ 7→ r ′ [λrs ().r ′ rs tt]

ff

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()
⟨ufork ()→ r ′⟩ 7→ r ′ (r :: rs ++ [λrs ().r ′ rs tt])

ff

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}
A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()
⟨ufork ()→ r ′⟩ 7→ r ′ [λrs ().r ′ rs tt]

ff

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()
⟨ufork ()→ r ′⟩ 7→ r ′ (r :: rs ++ [λrs ().r ′ rs tt])

ff

cooperate [main] =⇒ ()
M1 M2 M3 A1 B1 A2 B2

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency with UNIX-style fork
Effect signature

{yield : 1↠ 1, ufork : 1↠ Bool}
A single cooperative program

main () = print “M1 ”; if ufork () then print “A1 ”; yield (); print “A2 ”
else print “M2 ”; if ufork () then print “B1 ”; yield (); print “B2 ” else print “M3 ”

Handler

coop ([]) =
return () 7→ ()
⟨yield ()→ r ′⟩ 7→ r ′ [] ()
⟨ufork ()→ r ′⟩ 7→ r ′ [λrs ().r ′ rs tt]

ff

coop (r :: rs) =
return () 7→ r rs ()
⟨yield ()→ r ′⟩ 7→ r (rs ++ [r ′]) ()
⟨ufork ()→ r ′⟩ 7→ r ′ (r :: rs ++ [λrs ().r ′ rs tt])

ff

cooperate [main] =⇒ ()
M1 M2 M3 A1 B1 A2 B2

Exercise: implement a handler for a fork operation that uses the resumption linearly

Example: cooperative concurrency (shallow handler)
Effect signature

{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield ()→ t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (shallow handler)
Effect signature

{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield ()→ t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (shallow handler)
Effect signature

{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield ()→ t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (shallow handler)
Effect signature

{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield ()→ t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB]

=⇒ ()
A1 B1 A2 B2

Example: cooperative concurrency (shallow handler)
Effect signature

{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Handler
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield ()→ t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Operational semantics (shallow handlers)

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H ⇝ N[V /x]

handle E [opV] with H ⇝ Nop[V /p, (λx .E [x])/r], op # E

where H = return x 7→ N
⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H

Exercise: express shallow handlers as deep handlers

Operational semantics (shallow handlers)

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H ⇝ N[V /x]

handle E [opV] with H ⇝ Nop[V /p, (λx .E [x])/r], op # E

where H = return x 7→ N
⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H

Exercise: express shallow handlers as deep handlers

Typing rules (shallow handlers)

Effects
E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → A!E ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

Effect handler oriented programming languages

Eff https://www.eff-lang.org/

Effekt https://effekt-lang.org/

Frank https://github.com/frank-lang/frank

Helium https://bitbucket.org/pl-uwr/helium

Links https://www.links-lang.org/

Koka https://github.com/koka-lang/koka

OCaml 5 https://github.com/ocamllabs/ocaml-multicore/wiki

Unison https://www.unison-lang.org/

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki
https://www.unison-lang.org/

Resources

Jeremy Yallop’s effects bibliography
https://github.com/yallop/effects-bibliography

Matija Pretnar’s tutorial
“An introduction to algebraic effects and handlers”, MFPS 2015

Andrej Bauer’s tutorial
“What is algebraic about algebraic effects and handlers?”, OPLSS 2018

Daniel Hillerström’s PhD thesis
“Foundations for programming and implementing effect handlers”, 2022

https://github.com/yallop/effects-bibliography

