Mechanization of Binders

Kathrin Stark
SPLYV 2024

1.1.1. DEFINITION. Let
V= {’Uo,’Ul,...}

denote an infinite alphabet. The set A~ of pre-terms is the set of strings
defined by the grammar:

A =V (A~ A) | OV A

1.1.11. DEFINITION. For M € A~ define the set FV(M) C V of free variables
of M as follows.

FV(x) = {z}
FV(\z.P) = FV(P)\{z};
FV(PQ) = FV(P)UFV(Q).

Define preterms...
If FV(M) = {} then M is called closed. f p

1.1.13. DEFINITION. For M, N € A~ and z € V, the substitution of N for x
in M, written M|z := N] € A™, is defined as follows, where z # y:

z[zn=:N] =IN;

ylz :== N| =y;

(P Q)[z = N] =Pz := N] Qlz := NJ;

(X P) [gii=IN| =XE.P;

(My.P)[z := N] = \y.P[z := N], if y g FV(N) or x ¢ FV(P);
(Ay.P)[z := N] = Az.Ply := z][x :== N], ify € FV(N) and z € FV(P).

Serenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

1.1.15. DEFINITION. Let a-equivalence, written =4, be the smallest relation
on A, such that

P=,P for all P;
Az.P =, \y.Plz:=y] ify¢&FV(P),
and closed under the rules: e a_equivalence. ..

P=,P = VreV: Mo.P=,)\z.P;

P=,P = VYZeAk: PZ=,P Z

P=,P = VZeA: ZP=,ZP,

P =, P’ = P’ ~a P7

P=,P & P =,P" = P=,P.

1.1.17. DEFINITION. Define for any M € A™, the equivalence class [M], by:
[Mla = {N € A" | M =, N}
Then define the set A of A-terms by: ... actual terms ...
A= K/= = {[Ma|Men)

1.1.18. WARNING. The notion of a pre-term and the associated explicit dis-
tinction between pre-terms and A-terms introduced above are not standard
in the literature. Rather, it is customary to call our pre-terms A-terms, and
then informally remark that a-equivalent A-terms are “identified.”

Serenson, Urzyczyn - Lectures on the Curry-Howard Isomorphism

1.1.19. NOTATION. We write M instead of [M], in the remainder. This
leads to ambiguity: is M a pre-term or a A-term? In the remainder of these
notes, M should always be construed as [M], € A, except when ezplicitly
stated otherwise.

1.1.20. DEFINITION. For M € A define the set FV(M) C V of free variables
of M as follows.

FV(z) = {=z}
FV(\z.P) = FV(P)\{z};
FV(PQ) = FV(P)UFV(Q). ... and definitions on terms.

If FV(M) = {} then M is called closed.

1.1.21. REMARK. According to Notation 1.1.19, what we really mean by this
is that we define FV as the map from A to subsets of V satisfying the rules:

FV([z]a) = {z};
FV([Az.Pla) = FV([Pla)\{z};
FV([PQla) = FV([Pla) UFV([Qa).

Strictly speaking we then have to demonstrate there there is at most one such
function (uniqueness) and that there is at least one such function (existence).

Uniqueness can be established by showing for any two functions FV; and
FVj satisfying the above equations, and any A-term, that the results of FV;
and FV3 on the A-term are the same. The proof proceeds by induction on
the number of symbols in any member of the equivalence class.

To demonstrate existence, consider the map that, given an equivalence
class, picks a member, and takes the free variables of that. Since any choice
of member yields the same set of variables, this latter map is well-defined,
and can easily be seen to satisfy the above rules.

In the rest of these notes such considerations will be left implicit.

Mechanized Metatheory for the Masses:
The PopLMARK Challenge

Brian E. Aydemir!, Aaron Bohannon!, Matthew Fairbairn?, J. Nathan Foster!,
Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis!, Geoffrey
Washburn!, Stephanie Weirich!, and Steve Zdancewic!

! Department of Computer and Information Science, University of Pennsylvania
2 Computer Laboratory, University of Cambridge

Subversion Revision: 171
Document generated on: May 11, 2005 at 15:53

Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?

We propose an initial set of benchmarks for measuring progress in this
area. Based on the metatheory of System F«., a typed lambda-calculus
with second-order polymorphism, subtyping, and records, these bench-
marks embody many aspects of programming languages that are chal-
lenging to formalize: variable binding at both the term and type levels,
syntactic forms with variable numbers of components (including binders),
and proofs demanding complex induction principles. We hope that these
benchmarks wil' ™ ~'= ~1- = £ Al - —mmemk sl Lo et Lel - -

for comparing ¢ Our conclusion from these experiments is that the relevant technology has
1 Introductior developed almost to the point where it can be widely used by language re-
Many proofs about ;. S€@rchers. We seek to push it over the threshold, making the use of proof tools
dious, with just a f - common practice in programming language research—mechanized metatheory

agement of many det

mistakes or overlookc for the masses.

are amplified aslang . .

consistent. to reuse work. and to ensure ticht relationshins between theorv and |

Summary of the encoding techniques and tools used by the available submissions:

Alpha Prolog | Coq Twelf | ATS | Isabelle/HOL | Matita | Abella
de Bruijn Vouillon, Charguéraud (a) Berghofer
HOAS CcMU Gacek
Weak HOAS Ciaffaglione and Scagnetto
Hybrid Xi
Locally nameless Chlipala, Leroy, Charguéraud (b). Ricciotti
Named variables Stump
Nested abstract syntax Hirschowitz and Maggesi
Nominal Fairbairn Urban et al.

Many representations of term syntax with variable bindings have been used to formalize programming
language metatheory, but so far there is no clear consensus on which is the best representation. We

Scope
The scope of the workshop includes, but is not limited to:

Tool demonstrations: proof assistants, logical frameworks, visualizers, etc.

Libraries for programming language metatheory.

Formalization techniques, especially with respect to binding issues.

Analysis and comparison of solutions to the POPLmark challenge.

Examples of formalized programming language metatheory.

Proposals for new challenge problems that benchmark programming language work.

Some Comparisons

- Aydemair et al.: Mechanized Metatheory for the Masses: The PoplMark Challenge
2005

- Berghofer/Urban: A Head-to-Head Comparison of de Bruijn Indices and
Names 2007

- Abel et al. - POPLMark Reloaded: Mechanizing Proofs by Logical Relations 2019

- Brian Aydemir, Stephan A. Zdancewic, and Stephanie Weirich. Abstracting
syntax. 2009.

2021

- Popescu, Andrei. "Nominal Recursors as Epi-Recursors." Proceedings of the
ACM on Programming Languages 8.POPL (2024):

https://www.seas.upenn.edu/~plclub/poplmark/
https://poplmark-reloaded.github.io/
https://jesper.sikanda.be/posts/1001-syntax-representations.html

What to expect

- A short peek in different binder approaches:
Pure de Bruin, scoped de Bruijn, intrinsically typed, monadic,
HOAS/CMTT, PHOAS, nominal, locally nameless

What not to expect:
- Completeness in any direction

- Less about tools/theoretical foundations

Running Example: Subject Reduction

1.2.1. DEFINITION. Let —g be the smallest relation on A such that

(Az.P) Q —p Plz := Q),
and closed under the rules:
P—gP = VreV: Xx.P—oglz.P

P—>5P' = VZeA: PZ—)gP’Z
P—>gP’ = VZeA: ZP—»gZP’

A term of form (Az.P) Q is called a (-redez, and Pz := Q)] is called its
B-contractum. A term M is a B-normal form if there is no term N with
M —g N.

3.1.7. DEFINITION. The substitution of type T for type variable o in type o,
written oo := 7|, is defined by:

afa = T1] = T
Bl := 7] = p ifa#p
(01 = o2)ja:=7] = oifa:=7] > o2]a:=T]

The notation I'[a := 7] stands for the context {(z : o[a:=17]) | (x:0) € T'}.

' The set C of conterts is the set of all sets of pairs of the form
{z1:71,...,Zn: Tn}

with 71,... , 7 €Il, z1,... ,z, €V (variables of A) and z; # z; for i#j.

3.1.8. PROPOSITION (Substitution lemma).
(i) fT - M:o, thenT[a:=7| b M : ola:=T].
(i) IfTyz:7F M:0 andT' - N :7 thenT - M[z:= N]:o0.

PRrROOF. By induction on the derivation of I' - M : o and generation of
I'z:7 F M : o, respectively. ad

The following shows that reduction preserves typing.

3.1.9. PROPOSITION (Subject reduction). IfI' = M : o and M —3 N, then
I'-N:o.

PROOF. By induction on the derivation of M —z N using the substitution
lemma and the generation lemma. ad

Nameless Approaches

Kathrin Stark
SPLYV 2024

De Bruin Syntax

Manipulations in the lambda calculus are often troublesome because of
the need for re-naming bound variables. For example, if a free variable in
an expesssion has to be replaced by a second expression, the Jdanger arises De Bruijn, Nicolaas Govert.
that some free variable of the second expression bears the same name as "Lambda calculus notation
a bound variable in the first one, with the effect that binding s introduced
where it is not intended. Another case of re-naming arises if we want to
establish the equivalence of two expressions in those situations where the
only diiference lies in the names of the bound variables (i.c. when the
equivalence is so-called x-equivalence).

with nameless dummies, a tool
for automatic formula
manipulation, with application
to the Church-Rosser
theorem." 1972

In particular in machine-manipulated lambda caleulus this re naming
activity involves n great deal of labour, both in machine time as in
programming effort. It seems to be worth-while to try to get rid of the
re-naming, or, rather, to get rid of names altogether.

Consider the following three criteria for a good notation:

(1) easy tc write and easy to read for the human reader;
(i1) easy to handle in metalingual discussion;
(iti) easy for the computer and for the computer programmer,

The system we shall develop here is claimed to be good for (ii) and

good for (iii). It is not claimed to be very good for (i); this means that
for computer work we shall want automatic translation from one of the
ustal systems to our present system at the input stage, and backwards

De Bruin Syntax

- Idea: a-equivalence = definitional equality

- Terms:
Inductive tm: Type :=
| var tm : nat -> tm

| app : tm -> tm -> tm
| lam : tm -> tm.

- Example term: 1x.z(1y.(xy)z) > 1.1 (1.(10) 2)

lam (app (var tm 1) (lam (app (app (var tm 1)

(var tm 2)))

(var _tm 0))

(Parallel) Substitutions
de Bruin ‘72

S ifx=0
(s-0)(x) = { .
o(x —1) otherwise

id(x) := x t(x) = x+1

x[o] = o(x)
(st)[o] (sfo]) (t[o]) (0oT)(x) = o(x)[T]
(A.8)[o] A. (s[nro])

fto :=0-(oot) } Requires again substitution

Two-Level Approach: Adams, R.: Formalized metatheory with terms represented by an indexed family of
types. In: Types for Proofs and Programs, Lecture Notes in Computer Science, vol. 3839, pp. 1-16. Springer
Berlin Heidelberg (2006)

A convergent + complete rewriting system

(st)lo] = (sloD(tlo]D idoo =0
(A.S)[o]=A. (s[0-001]) ooid=o0
Ols-o]l=s (OoT)oO@=00(To0)
to(s-0)=0 (s-0)oT=58[T]- 00T
slid]=s slollt]l=slooT]
Olc]l-(too) =0 0-1=id

s =t can be decided via the above rewriting system

Abadi et al.: Explicit Substitutions ‘96
Schéfer, S., Smolka, G., Tebbi, T.: Completeness and decidability of de Bruijn substitution algebra in Coq ‘15

Single-Point de Bruijn Substitutions

One central notion when working with de Bruijn indices is the lifting operation,
written 17 where n is an offset by which the indices greater or equal than k are
incremented; k is the upper bound of indices that are regarded as locally bound.
This operation can be defined as:

1 (Var 4) def Var i ifi<k
k Var (i +m) otherwise
n ef n n

17 (App My Ma) = App (17 My) (17 M)

17 (Lam My) % Lam (17, M)

Var 1 ifi<k
(Var i)k == N] £ { 1k N if i =k
Var (i—1) ifi>k
(App My My)[k := N] = App (M [k == NJ) (Malk := N])

(Lam M)[k := N] & Lam (M[k + 1 := N])

From Berghofer/Urban: A Head-to-Head Comparison of de Bruijn Indices and Names

Single-Point de Bruijn Substitutions

(ctd.)

Substitution Lemma with de Bruijn Indices: For all indices 1,
7, with ¢ < j we have that

M[i:=N][j:==L=M[j+1:=L]|[i:=N[j—i:= L] .

In this formalisation considerable ingenuity is needed when inventing the lemmas
(4), (5) and (6). Also they are quite “brittle”—in the sense that they seem to
go through just in the form stated. To find them can be a daunting task for
an inexperienced user of theorem provers (they are only in little part inspired by

et e gy et ar s aeeereen s e e e e oareree = s (= e s -

The non-routine case in the de Bruijn version is the Var-case where we have to
show that

(3) (Var n)[i := N][j := L] = (Var n)[j + 1 := L][¢ := N[j — 3 := L]]

holds for an arbitrary n. Like in the informal proof, we need to distinguish cases
so that we can apply the definition of substitution. There are several ways to order
the cases; below we have given the cases as they are suggested by the definition of
substitution (namely n< ¢, n =14 and n> 4):

e Case n < i: We know by the assumption 7 < j that alson< j and n< j+ 1.
Therefore both sides of (3) are equal to Var n.

e Case n = i: The left-hand side of (3) is therefore equal to (1) N)[j := L] and
because we know by the assumption ¢ < j that n < j + 1, the right-hand side is
equal to) (N[j —4 := L]). Now we have to show that both terms are equal. For
this we prove first the lemma

(4) Vi,j.if i < j and j <4+ m then 17 (17" N) =N
which can be proved by induction on N. (The quantification over ¢ and j is

necessary in order to get the Lam-case through.) This lemma helps to prove the
next lemma
(5) Vk,j. if k < j then 1% (N[j:=L])= (1% N)[j +i:= L]
which too can be proved by induction on N. (Again the quantification is crucial
to get the induction through.) We can now instantiate this lemma with k& — 0
and j — j — ¢, which makes the precondition trivially true and thus we obtain
the equation
T (Nli—i:=Ll) = (T N)j —i+i:=L].

The term (7§ N)[j — i + 4 := L] is equal to (1§ N)[j := L], as we had to
show. However this last step is surprisingly not immediate: it depends on the
assumption that ¢ < j. This is because in theorem provers like Isabelle/HOL
and Coq subtraction over natural numbers is defined so that 0 — n = 0 and
consequently the equation j — 4 + 7 = j does not hold in general!

e Case n > 4: Since the right-hand side of (3) equals (Var(n — 1))[j := L], we
distinguish further three subcases (namely n —1<j,n—1=jand n—1> j):

e Subcase n — 1< j: We therefore know also that n< j + 1 and thus both sides

Some Variations
De Bruyn Levels

- Terms:
Inductive tm: Type :=
| var tm : nat -> tm

| app : tm -> tm -> tm
| lam : tm -> tm. —

- Example term: A x.x (1y.xy)=1.0(1.01) -

Assumes there exists a global
/ root node

Stays the same

De Bruijn, Nicolaas Govert. " , a tool for
automatic formula manipulation, with application to the Church-Rosser theorem." 1972
Cregut: An abstract machine for the normalization of A-calculus. In Proc. Conf. on Lisp and
Functional Programming, pages 333—-340. ACM, 1990. (“reversed De Bruijn indexing”)

De Bruin Syntax

- Idea: a-equivalence = definitional equality
- Terms:

Inductive tm: Type :=

| var tm : nat -> tm

| app : tm -> tm -> tm

| lam : tm -> tm.

- Example term: A x.z(ly.(xy)z) > 4.1 (4.(10) 2)

lam (app (var tm 1) (lam (app (app (var tm 1) (var tm 0))
(var tm 2)))

Example: n-reduction rule for A-terms

x € FV s
L. ST DS A(s[1]0) > s

Doesn’t require
dependent types/very
general-purpose

Do not constraint the
size of the contexts
=> sometimes
required for syntactic
translations

Well Scoped De Bruyn Syntax

- Idea: a-equivalence = definitional equality

- Terms:
Inductive tm n : Type :=
| var tm : fin n -> tm n
| app : tm n -> tm n -> tm n
| lam : tm S n -> tm n.

- Example term: 1x.z(1y.(xy) z) =
A.(suc zero) (A. ((suc zero) zero) (suc (suc zero)))

lam (app (var tm (suc zero)) (lam (app (app (var tm (suc
zero)) (var_tﬁ zero)) (var tm (suc (suc zero))))

Example: n-reduction rule for A-terms

Well scoped by construction — if

x &€ FV s " the shift is not included, an error is thrown

AL. ST S A(s[1]0) > s

—

Adams, R.: Formalized metatheory with terms represented by an indexed family of types. In: Types for Proofs
and Programs, Lecture Notes in Computer Science, vol. 3839, pp. 1-16. Springer Berlin Heidelberg (2006)
Bird, R., Paterson, R.: de Bruijn notation as a nested datatype. J. Funct. Program. 9, 77-91 (1999)

Girard’s normalization proof for System F

6.2.3 Arrow type

A term of arrow type is reducible iff all its applications to reducible terms are
reducible.

(CR 1) If ¢t is reducible of type U—V, let z be a variable of type U; the
induction hypothesis (CR 3) for U says that the term z, which is neutral
and normal, is reducible. So tz is reducible. Just as in the case of
the product type, we remark that v(t) < v(tz). The induction hypothesis
(CR 1) for V guarantees that v(tz) is finite, and so v(t) is finite, and ¢ is
strongly normalisable.

} Implicitly uses ill-scoped terms
- what if in the empty context?

Monadic Terms

Inductive tm (X : Set) : Set :=
| var : X - tm X

| lam : tm (option X) - tm X

| app : tm X-» tm X- tm X.

Example term: A x.x (ly.xy) =

Example ex (X : Set) : tm X :=
lam (app (var None) (lam (app (var (Some None)) (var None)))).

Fixpoint fmap {X Y : Set} (f : X - Y) (t : tm X) : tm Y.

Well-scoped terms can be obtained from monadic terms and vice versa in well-behaved examples:
Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. ,Monads Need Not Be Endofunctors”. In:
Logical Methods in Computer Science 11.1 (Mar. 2015) (cit. on pp. 25, 166).

Discussion on a formalization for POPLMark Challenge: Hirschowitz/Maggesi: Nested
Abstract Syntax in Coq. ‘09

Functorial Syntax for All

Piotr Polesiuk
ppolesiuk@cs.uni.wroc.pl
Institute of Computer Science
University of Wroctaw
Wroclaw, Poland

1 Functorial approach to binding

Variable binding, in its many forms, is ubiquitous in pro-
gramming languages; therefore, approaches to representing
binding structures and reasoning about them in theorem
proving systems abound. From simple named representa-
tions, to nameless and locally nameless syntax via de Bruijn
indices, to higher-order abstract syntax and nominal tech-
niques, many approaches have been tried, and many libraries,
plugins and formalisations developed. In this talk we present
another library, based on the notion of functorial syntax, and
report on our experience in its development and use across
a number of formalisation projects.

Let us begin by introducing the functorial approach to
binding and syntax, via the following representation of A-
terms.

Inductive term (X : Set) : Set :=
| var : X — term X

| lam : term (inc X) — term X

| app : term X — term X — term X.

The key idea of this representation is to parametrise the
type of terms by a set X that describes a scope. The variable
constructor (var) accepts only variables that are in the scope,
while lambda-abstraction (lam) extends the scope by one
element (type inc is isomorphic to option). A substitution
operation substitutes for a variable added by an inc type,
and is implemented via simultaneous substitution, which

| SN §. N, SRS & S N L NN - S

Filip Sieczkowski
f.sieczkowski@hw.ac.uk
School of Mathematics and Computer Science
Heriot-Watt University
Edinburgh, United Kingdom

to parameterise terms with sets (and general functions) is
not crucial: we can make the construction more general by
treating syntax (the type term in our example) as a functor
from a chosen renaming category, whose objects represent
scopes and arrows (which appear as the first argument of
fmap above) represent valid renamings, into the category of
sets: in other words, a preasheaf. The observation itself is
not new; however, to the best of our knowledge it has not
been utilised as a basis of a generic library for binding. In
the following sections we sketch how this can be achieved,
and what benefits can be garnered from this approach.

2 Type classes for parameterisation wrt.
renaming categories

At the core of our approach lies the reification of the notion
of a renaming category as a (set of) Coq typeclasses. This
includes a notion of arrows (i.e., valid renamings for our
domain), together with identity and composition, and their
properties, and the notion of the functorial action of type
constructors on these arrows, i.e., functoriality, which needs
to be provided by the user for each of the types they define.
In addition to this, the library provides a second category
of substitutions, which is connected to the renamings via
the usual embedding (which treats a renaming as a substi-
tution) and properties. The action of type constructors on
substitutions, which the user also needs to provide, is si-
multaneous substitution and gives the tvpoe constructor a

CoqPL’24

Full version in
progress

1.1.19. NOTATION. We write M instead of [M], in the remainder. This
leads to ambiguity: is M a pre-term or a A-term? In the remainder of these
notes, M should always be construed as [M], € A, except when ezplicitly
stated otherwise.

1.1.20. DEFINITION. For M € A define the set FV(M) C V of free variables
of M as follows.

FV(z) = {=z}
FV(\z.P) = FV(P)\{z};
FV(PQ) = FV(P)UFV(Q). ... and definitions on terms.

If FV(M) = {} then M is called closed.

1.1.21. REMARK. According to Notation 1.1.19, what we really mean by this
is that we define FV as the map from A to subsets of V satisfying the rules:

FV([z]a) = {z};
FV([Az.Pla) = FV([Pla)\{z};
FV([PQla) = FV([Pla) UFV([Qa).

Strictly speaking we then have to demonstrate there there is at most one such
function (uniqueness) and that there is at least one such function (existence).

Uniqueness can be established by showing for any two functions FV; and
FVj satisfying the above equations, and any A-term, that the results of FV;
and FV3 on the A-term are the same. The proof proceeds by induction on
the number of symbols in any member of the equivalence class.

To demonstrate existence, consider the map that, given an equivalence
class, picks a member, and takes the free variables of that. Since any choice
of member yields the same set of variables, this latter map is well-defined,
and can easily be seen to satisfy the above rules.

In the rest of these notes such considerations will be left implicit.

Summary of the encoding techniques and tools used by the available submissions:

Alpha Prolog | Coq Twelf | ATS | Isabelle/HOL | Matita | Abella
de Bruijn Vouillon, Charguéraud (a) Berghofer
HOAS CcMU Gacek
Weak HOAS Ciaffaglione and Scagnetto
Hybrid Xi
Locally nameless Chlipala, Leroy, Charguéraud (b). Ricciotti
Named variables Stump
Nested abstract syntax Hirschowitz and Maggesi
Nominal Fairbairn Urban et al.

Many representations of term syntax with variable bindings have been used to formalize programming
language metatheory, but so far there is no clear consensus on which is the best representation. We

Scope
The scope of the workshop includes, but is not limited to:

Tool demonstrations: proof assistants, logical frameworks, visualizers, etc.

Libraries for programming language metatheory.

Formalization techniques, especially with respect to binding issues.

Analysis and comparison of solutions to the POPLmark challenge.

Examples of formalized programming language metatheory.

Proposals for new challenge problems that benchmark programming language work.

De Bruin Syntax

- Idea: a-equivalence = definitional equality
- Terms:

Inductive tm: Type :=

| var tm : nat -> tm

| app : tm -> tm -> tm

| lam : tm -> tm.

- Example term: A x.z(ly.(xy)z) > 4.1 (4.(10) 2)

lam (app (var tm 1) (lam (app (app (var tm 1) (var tm 0))
(var tm 2)))

Example: n-reduction rule for A-terms

x € FV s
L. ST DS A(s[1]0) > s

Doesn’t require
dependent types/very
general-purpose

Do not constraint the
size of the contexts
=> sometimes
required for syntactic
translations

(Parallel) Substitutions
de Bruin ‘72

S ifx=0
(s-0)(x) = { .
o(x —1) otherwise

id(x) := x t(x) = x+1

x[o] = o(x)
(st)[o] (sfo]) (t[o]) (0oT)(x) = o(x)[T]
(A.8)[o] A. (s[nro])

Il

fto :=0-(oot) } Requires again substitution

Two-Level Approach: Adams, R.: Formalized metatheory with terms represented by an indexed family of
types. In: Types for Proofs and Programs, Lecture Notes in Computer Science, vol. 3839, pp. 1-16. Springer
Berlin Heidelberg (2006)

Well Scoped De Bruyn Syntax

- Idea: a-equivalence = definitional equality

- Terms:
Inductive tm n : Type :=
| var tm : fin n -> tm n
| app : tm n -> tm n -> tm n
| lam : tm S n -> tm n.

- Example term: 1x.z(1y.(xy) z) =
A.(suc zero) (A. ((suc zero) zero) (suc (suc zero)))

lam (app (var tm (suc zero)) (lam (app (app (var tm (suc
zero)) (var_tﬁ zero)) (var tm (suc (suc zero))))

Example: n-reduction rule for A-terms

Well scoped by construction — if

x &€ FV s " the shift is not included, an error is thrown

AL. ST S A(s[1]0) > s

Adams, R.: Formalized metatheory with terms represented by an indexed family of types. In: Types for Proofs
and Programs, Lecture Notes in Computer Science, vol. 3839, pp. 1-16. Springer Berlin Heidelberg (2006)
Bird, R., Paterson, R.: de Bruijn notation as a nested datatype. J. Funct. Program. 9, 77-91 (1999)

Monadic Terms

Inductive tm (X : Set) : Set :=
| var : X - tm X

| lam : tm (option X) - tm X

| app : tm X-» tm X- tm X.

Example term: A x.x (ly.xy) =

Example ex (X : Set) : tm X :=
lam (app (var None) (lam (app (var (Some None)) (var None)))).

Fixpoint fmap {X Y : Set} (f : X - Y) (t : tm X) : tm Y.

Well-scoped terms can be obtained from monadic terms and vice versa in well-behaved examples:
Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. ,Monads Need Not Be Endofunctors”. In:
Logical Methods in Computer Science 11.1 (Mar. 2015) (cit. on pp. 25, 166).

Discussion on a formalization for POPLMark Challenge: Hirschowitz/Maggesi: Nested
Abstract Syntax in Coq. ‘09

g gallais coitep 09:14
One thing | could not remember during dinner yesterday but people might appreciate is the nice

and systematic relationship between the "terms as monads" approach and the "terms as relative

monads" one. In his habilitation thesis, Bruno Barras gives a justification for the existence of

inductive datatypes with large non-regular parameters like the one we use for terms as monads:

data Term (a : Set) :=
| var : a -> Term a
| app : Term a -> Term a -> Term a
| lam : Term (option a) -> Term a
== AAAAAAAA here is the non-regularity:
== the "parameter" is changing in recursive substructures

Why is it okay to have these changing "parameters" without bumping the size of the definition by
one universe level?

The systematic approach he describes is to define a small set encoding the possible parameter
updates and change the definition to let the large parameter be regular and have a small index
keeping track of the updates. Whenever the parameter is used, we can instead call a function
which will deploy the list of updates over the parameter. It would look something like this.

data Updates = Start | Bind Updates

updates : Updates -> Set -> Set
updates Start a = a
updates (Bind u) a = option (updates u a)

data Term (a : Set) : Updates -> Set :=
| var : updates u a -> Term a u
| app : Term a u -> Term a u -> Term a u
| lam : Term a (Bind u) -> Term a u

- £ e el & G el https://spls.zulipchat.com/#narrow/strea
Now, if you squint a little bit, you'll see that updates is essentially Nat. And if you're happy to m/402733-splv-
start from Term Void Start (the type of closed terms), you'll see that updates u Void is 2024/topic/Mechanization.200f.20Binders

essentially Fin u. Throw away the (now useless) parameter, keep the small index, and voila. .20.28Kathrin.20Stark.29

https://spls.zulipchat.com/
https://spls.zulipchat.com/
https://spls.zulipchat.com/
https://spls.zulipchat.com/

Intrinsically Typed Syntax

Inductive ty := Base | Fun (A B : ty).
Definition ctx := list ty.

Fixpoint at ty (G : ctx) (A : ty) : Type :=
match G with
| nil = False

| (B :: G') = (A =B) +at ty G' A
end.

Inductive tm (G : ctx) : ty - Type :=

| var A : at ty GA - tm G A

| app AB : tm G (Fun A B) - tm G A -» tm G B
| lam A B : tm (A :: G) B » tm G (Fun A B).

Fixpoint inst {G: G2} (f : subst Gi1 G2) {A} (s : tm G1 A) : tm G2 A :=
match with

s
| var i = £ _ i

| app s t = app (inst f s) (inst f t)
| lam b = lam (inst (up f) b)

end.

Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. ‘99
Benton, Nick, et al. "Strongly typed term representations in Coq." 2012

Types of Renamings/Substitutions

- Pure:
"R . . Inductive ty := Base | Fun (A B : ty).
enamings: nat -> nat Definition ctx := list ty.
+ Substitutions: nat -> tm
Fixpoint at ty (G : ctx) (A : ty) : Type :=
S d: match G with
© ocoped. | nil = False
- Renamings: fin m -> fin n | (B :: G') = (A=B) + at_ty G' A
. . . end.
* Substitutions: fin m -> tm n

. . Definition env (G : ctx) (T : ty -» Type) := V A, at ty G A - T A.
- Intrinsically Typb. Definition ren (Gi Gz : ctx) := env G: (at_ty Gz).
* Renamings: R
Substitutions : ” Definition subst (G: G2 : ctx) := env G: (tm Gz2).

Lemma 3.18 (Anti-Renaming).

L. fT'F[p]M:Ae€SNandT" <, T, thenT'-M :A € SN

2. If ' [p]M:A € SNeand T’ <, T, then T M : A € SNe

3. If '+ [p]M — gy N': A and " <, T, then there exists N s.t. TFM — gy N : A
and [p]N =N'.

Inductive step {G} : V {A}, tm G A » tm G A -» Prop :=
| step beta AB (b : tm (A :: G) B) (t : tm G A) :

step (app (lam b) t) (inst (t .: ids) b)
| step abs A B (b1 b2 : tm (A :: G) B) :
@step = bi b2 - @step G (Fun A B) (lam bi) (lam b2)

| step appL A B (s1 s2 ¢: tm G (Fun A B)) (t ¢« tm G A) :
step s1 s2 - step (app s:1 t) (app s:2 t)

| step appR A B (s : tm G (Fun A B)) (t: t2 : tm G A) :
step t1 t2 - step (app s ti1) (app s t2).

Dependently typed constructor
for type abstraction in System F:

A :ETot)A—-ET (VA

K_Y_)

Only applicable
to arguments of contexts
of exactly this form

[o(TeT) = (T ol) ol

propositionally but not definitionally

When moving to dependent types, we need inductive-inductive types to represent well-typed terms of a
dependently typed language:

Thorsten Altenkirch and Ambrus Kaposi. ,,Type Theory in Type Theory Using Quotient Inductive Types”. In:
ACM SIGPLAN Notices 51.1 (Jan. 2016), pp. 18-29 (cit. on pp. 42, 166).

However, when it comes to eliminators, this type looks like a weak pair type, corresponding
to a type with an eliminator let (z,y) = p in €/, rather than projective eliminators like 71 (p)
and 7o (p). In the absence of parametricity, this is correct, but it is a remarkable fact [12]
that in a parametric model, we can realize strong eliminators for this type, defined as follows:
fst: (Zz: X.Y) > X =Ap.p X (Az. \y. 2)

w snd:Ilp: (Bz: X.Y). [fstp/z]Y = Ap. p (Bz: X.Y) pair ([fstp/z]Y) (Az. Ay. y)

Note that the projective eliminator snd is not syntactically well-typed. Instead, we will use
our parametric model to show that it has the correct semantic type and equations, and so it
realizes the projective eliminator. This means it is safe to add as an axiom to our system,
and that it will have good computational behavior.

Krishnaswami, Neelakantan R., and Derek Dreyer. "Internalizing relational parametricity in the
extensional calculus of constructions." Computer Science Logic 2013 (CSL 2013). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

Co-De Bruin Representation

Inductive Cover : forall (k 1 m : nat), Set :=
| done : Cover @ 0 0

| left k T m : Cover k L m —> Cover (S k) 1 (S m)
| right k 1 m: Cover k 1 m —> Cover k (S 1) (S m)
| both k T m : Cover k L. m —> Cover (S k) (S 1) (S m)

Inductive tm : nat —> Type :=

| var : tm 1

| lam n : tm (S n) —> tm n

| lam' n : tm n —=> tm n

| app k L m : Cover k T m —> tm k —> tm 1 —> tm m.

(k 2 x. z (2 y. x z) %)

Example ex : tm 1 :=
lam (x tm 2 %)
(app (% Cover 1 2 2 x)
(right (% @ is just used on the right side x)
(both (x 1 is just on both sides x)
done)) (% tm 1 %) var
(lam' (% tm 2 x*)
(app (x cover 1 1 2 x)
(left (right done)) var var))).

Everybody’s Got To Be Somewhere, Conor McBride 2018
Stripped version by Jesper Cockx, ‘https://jesper.sikanda.be/posts/1001-syntax-
representations.html

https://jesper.sikanda.be/posts/1001-syntax-representations.html
https://jesper.sikanda.be/posts/1001-syntax-representations.html

Notes

Remember that we work with an encoding:

2.2 Arithmetic Within Types
Our second maxim is:

When using a family of types indexed by nat, make sure that the index
term never involves plus or times

or, more briefly, avoid arithmetic within types.

Adams, R.: Formalized metatheory with terms represented by an indexed family of types. In: Types for
Proofs and Programs (2006)

Nominal Syntax and (variants of) HOAS

Kathrin Stark
SPLYV 2024

1.1.19. NOTATION. We write M instead of [M], in the remainder. This
leads to ambiguity: is M a pre-term or a A-term? In the remainder of these
notes, M should always be construed as [M], € A, except when ezplicitly
stated otherwise.

1.1.20. DEFINITION. For M € A define the set FV(M) C V of free variables
of M as follows.

FV(z) = {=z}
FV(\z.P) = FV(P)\{z};
FV(PQ) = FV(P)UFV(Q). ... and definitions on terms.

If FV(M) = {} then M is called closed.

1.1.21. REMARK. According to Notation 1.1.19, what we really mean by this
is that we define FV as the map from A to subsets of V satisfying the rules:

FV([z]a) = {z};
FV([Az.Pla) = FV([Pla)\{z};
FV([PQla) = FV([Pla) UFV([Qa).

Strictly speaking we then have to demonstrate there there is at most one such
function (uniqueness) and that there is at least one such function (existence).

Uniqueness can be established by showing for any two functions FV; and
FVj satisfying the above equations, and any A-term, that the results of FV;
and FV3 on the A-term are the same. The proof proceeds by induction on
the number of symbols in any member of the equivalence class.

To demonstrate existence, consider the map that, given an equivalence
class, picks a member, and takes the free variables of that. Since any choice
of member yields the same set of variables, this latter map is well-defined,
and can easily be seen to satisfy the above rules.

In the rest of these notes such considerations will be left implicit.

Barendregt Convention

2.1.12. CONVENTION. Terms that are a-congruent
are identified. So now we write Az.x = Ay.y, etcetera.

2.1.13. VARIABLE CONVENTION. If M,,..., M,
occur in a certain mathematical context (e.g. defini-
tion, proof), then in these terms all bound variables
are chosen to be different from the free variables.

e var(a)la:=N]=N
e var(b)[a := N| = var(b) providedb # a
o app(My, Ms)[a := N| = app(M[a := N], Ms[a := NJ)
e lam(b, M)[a := N] = lam(b, M[a := N])
provided b # aand b ¢ FV(N)

Examples from: Urban, Norrish: A Formal Treatment of the Barendregt Variable Convention

2.1.16. SUBSTITUTION LEMMA. If z # y and =z ¢
FV (L), then

Mz := N]ly := L| = M|y := L][z := N[y := L]].

PROOF. By induction on the structure of M.
Case 1: 1M is a variable.
Case 1.1. M = z. Then both sides equal
N[y := L]since x # y.
Case 1.2. M = y. Then both sides equal L, for
z & FV (L) implies L[z := ...] = L.
Case 1.3. M = z # x,y. Then both sides equal z.

Case 2: M = \z.M;. By the variable convention we may
assume that z Z z,y and z is not free in IV, L. Then by
induction hypothesis

)
= Az.(Mj[z := N[y :)
= Az.(Mily := L][z := N[y := L]|)
= (Az.My)[y := L][z := N[y := L]].

Case 3: M = M; M, The statement follows again from
the induction hypothesis.

—

Figure 1. Barendregt’s proof of the Substitution Lemma

Equivariance:
A definition commutes with permutation.

Nominal Techniques

Working over an abstract sort of atoms - allowing

atom decl "name" freshness (#) and swapping two atoms
nominal_datatype "7" =
TyUnit
| TyArrow II7_II II7_II (II— — ;II 5@) —\
nominal_ datatype "term" = Ensures that the datatype
Var "name” , , ~— respects equivariance
| Lam x::"name" "7" e::"term" binds x in e ("A _: . " 50)
| App Iltermll mll
| _

Abstracting over a new name A notion of support:

A finite set of variables
that the definition may
contain

supp x & {a | infinite {b | (a b) +x # x}}
There is also the derived notion for when an atom a is fresh for an x, defined as

a#x d=efa¢suppx

Nominal Logic, a first-oder theory of names and binders — Pitts 2003.

Nominal Unification, Urban, Pitts, Gabbay — 2004.

Nominal Techniques in Isabelle/ HOL. Urban/Tasson 2005.

General Bindings and Alpha-Equivalence in Nominal Isabelle, Urban/Kaliszyk ‘12

Equivariance:
A definition commutes with permutation.

Nominal Techniques

Nominal definitions are shown to be equivariant: . .
Freshness of side conditions:

(** subrules *) The Nominal library supports
\nominal_ function] . .

ic v of e :: "term = bool" proving those/automatically
shmes derives reasoning infrastructure

General renaming/instantiation have to be defined:

(** substitutions *)
)[nominal_function
subst term :: "term => name => term => term"
where
“subst term e 5 x5 (Var x) = ((if x=x5 then e 5 else (Var x)))"
| "atom x # (x5, e 5) = subst terme 5 x5 (A Xx : 7. e)
= (Lam x 7 (subst term e 5 x5 e))" ° : : . :
| “subst term e 5 x5 (App el e2) = (App (subst term e 5 x5 el) (subst term e Compatlble Wlth classmal reasonlng
apply (all trivials)
apply (simp add: eqvt def subst term graph aux def)
apply(pat_comp aux)
apply(auto simp: fresh star def fresh Pair)
apply blast
apply (auto simp: eqvt at def)
apply (metis flip fresh fresh)+
done
nominal_termination (eqvt) by lexicographic order

Nominal Unification, Urban, Pitts, Gabbay — 2004.
Nominal Techniques in Isabelle/ HOL. Urban/Tasson 2005.

Used by

MiniSail - A kernel language for the ISA specification language SAIL

From Abstract to Concrete Godel's Incompleteness Theorems—Part Il Robinson Arithmetic
Formalization of Generic Authenticated Data Structures

Modal Logics for Nominal Transition Systems The Z Property Gédel’s Incompleteness Theorems

The Correctness of Launchbury’s Natural Semantics for Lazy Evaluation

CCS in nominal logic
Jesper Bengtson 2012

We formalise a large portion of CCS as described in Milner's book 'Communication and Concurrency' using
the nominal datatype package in Isabelle. Our results include many of the standard theorems of
bisimulation equivalence and congruence, for both weak and strong versions. One main goal of this
formalisation is to keep the machine-checked proofs as close to their pen-and-paper counterpart as
possible.

This entry is described in detail in Bengtson's thesis. The pl-calculus in nominal |OgIC

in Computer science/Concurrency/Process calculi Jesper Bengtson 2012

We formalise the pi-calculus using the nominal datatype package, based on ideas from the nominal logic
by Pitts et al., and demonstrate an implementation in Isabelle/HOL. The purpose is to derive powerful
induction rules for the semantics in order to conduct machine checkable proofs, closely following the
intuitive arguments found in manual proofs. In this way we have covered many of the standard theorems
of bisimulation equivalence and congruence, both late and early, and both strong and weak in a uniform
manner. We thus provide one of the most extensive formalisations of a the pi-calculus ever done inside a
theorem prover.

Notes

Remember that we work with an encoding:

2.2 Arithmetic Within Types
Our second maxim is:

When using a family of types indexed by nat, make sure that the index
term never involves plus or times

or, more briefly, avoid arithmetic within types.

Adams, R.: Formalized metatheory with terms represented by an indexed family of types. In: Types for
Proofs and Programs (2006)

Equivariance:
A definition commutes with permutation.

Nominal Techniques

Working over an abstract sort of atoms - allowing

atom decl "name" freshness (#) and swapping two atoms
nominal_datatype "7" =
TyUnit
| TyArrow II7_II II7_II (II— — ;II 5@) —\
nominal_ datatype "term" = Ensures that the datatype
Var "name” , , ~— respects equivariance
| Lam x::"name" "7" e::"term" binds x in e ("A _: . " 50)
| App Iltermll mll
[} -

Abstracting over a new name A notion of support:

A finite set of variables
that the definition may
contain

supp x & {a | infinite {b | (a b) +x # x}}
There is also the derived notion for when an atom a is fresh for an x, defined as

a#x d=efa¢suppx

Nominal Logic, a first-oder theory of names and binders — Pitts 2003.

Nominal Unification, Urban, Pitts, Gabbay — 2004.

Nominal Techniques in Isabelle/ HOL. Urban/Tasson 2005.

General Bindings and Alpha-Equivalence in Nominal Isabelle, Urban/Kaliszyk ‘12

Barendregt Convenes with Knaster and Tarski:
Strong Rule Induction for Syntax with Bindings

JAN VAN BRUGGE, Heriot-Watt University, United Kingdom
JAMES MCKINNA, Heriot-Watt University, United Kingdom
ANDREI POPESCU, University of Sheffield, United Kingdom
DMITRIY TRAYTEL, University of Copenhagen, Denmark

This paper is a contribution to the meta-theory of systems featuring syntax with bindings, such as A-calculi
and logics. It provides a general criterion that targets inductively defined rule-based systems, enabling for them
inductive proofs that leverage Barendregt’s variable convention of keeping the bound and free variables disjoint.
It improves on the state of the art by (1) achieving high generality in the style of Knaster-Tarski fixed point
definitions (as opposed to imposing syntactic formats), (2) capturing systems of interest without modifications,
and (3) accommodating infinitary syntax and non-equivariant predicates.

CCS Concepts: » Theory of computation — Logic and verification.

Additional Key Words and Phrases: syntax with bindings, induction, formal reasoning, nominal sets

1 INTRODUCTION

Inductive definitions and proofs are a cornerstone of mathematics and theoretical computer science, See Zlﬂlp
and therefore solid and flexible foundations for induction are crucial in the development of these

Higher-Order Abstract Syntax

tp . type.
unit : tp.
arrow : tp —> tp —> tp.

We represent these terms in LF with the following signature:

tm : type.
empty : tm.
app rotm = tm —> tm.
lam : tp — (tm —> tm) —> tm.

a-equivalent by construction:
Example: Ax.1y.x y no way to distinguish

[x] (lam unit ([y] app x V)
lam (arrow unit unit) ([x] (lam unit ([y] app x Vy)) and

([z] (lam unit ([y] app z V)
in the meta-theory

Well scoped by construction

Higher-Order Abstract Syntax, Pfenning/Elliot '88
Twelf: Pfenning/Schiirmann ‘99

https://twelf.org/wiki/proving-metatheorems-representing-the-syntax-of-the-stlc/

value i tm —> type.
value-empty : value empty.

value-lam : value (lam T ([x] E x)).

step o tm —> tm —> type.

step-app-1 : step (app E1 E2) (app E1' E2)
<- step E1 E1'.

step-app-2 : step (app E1 E2) (app E1 E2')

<- value E1
<- step E2 E2'.

step-app-beta : step (app (lam T2 ([x] E x)) E2) (E E2)
<- value E2.

Substitutions for free

Does this correctly implement what
we want?

Adequacy: The representation within the meta-language is syntactically
correct (a one-to-one correspondence between the objects in the object
language/the representation in the meta language) and semantically faithful.

=> The term function space tm -> tm must correspond to the type of open types
with a single free variable.

The meta language matters =>
no elimination of constants possible:

Exotic term:
No corresponding

lam ([x : tm]
match x with

object-language term | empty =>
with a free | =
variable end)

The meta language matters =>
no classical metatheory possible:

lam ([x : tm]
1f (x = empty)
then empty
else ..)

Mechanizing Metatheory in a Logical Framework, Harper/Licata 2007

No variable rule!

Typing Statement

of : tm -> tp -> type.
of-empty : of empty unit.

of-lam : of (lam T2 ([x] E x)) (arrow T2 T) <- ({x: tm} of x T2 ->
of (E x) T).

of-app : of (app E1 E2) T <- of El1 (arrow T2 T) <- of E2 TZ2.

The adequacy theorem for typing derivations is as follows:

There is a compositional bijection between informal derivations of 21 : 71,...F e : 7 and LF
terms D suchthat x1 : tm, dx1 : of x4 T1, ... |- D : of E T,wheree > E, 7> T,
and 71 > Ti, ...

value i tm —> type.

)
Preser &/. atlo I I value-empty : value empty.
value-lam : value (lam T ([x] E x)).

step :tm —> tm —> type.
step-app-1 : step (app E1 E2) (app E1' E2)
<- step E1 E1'.
preserv : step E E' —> of ET —> of E' T —> type. step-app=2 = step (app E1 E2) (app El E2t)

<- value E1
<- step E2 E2'.

step-app-beta : step (app (lam T2 ([x] E x)) E2) (E E2)
<- value E2.

%mode preserv +Dstep +Dof -Dof'.

preserv-app-1 . preserv
(step—app-1 (DstepEl : step E1 E1'))
(of-app (DofE2 : of E2 T2)
(DofE1 : of E1 (arrow T2 T)))
(of-app DofE2 DofE1l')
<- preserv DstepEl DofEl (DofE1l' : of E1' (arrow T2 T)).

preserv-app-2 ! preserv
(step—-app-2 (DstepE2 : step E2 E2') (DvalEl : value E1))
(of-app (DofE2 : of E2 T2)
(DofE1l : of E1 (arrow T2 T)))
(of-app DofE2' DofE1)
<- preserv DstepE2 DofE2 (DofE2' : of E2' T2).

preserv-app-beta : preserv
(step—-app-beta (Dval : value E2))
(of-app (DofE2 : of E2 T2)
(of-lam (([x] [dx] DofE x dx)
: {x : tm} {dx : of x T2} of (E x) T)))

(DofE E2 DofE2).
.—

sworlds () (preserv _ _ _).
%total D (preserv D _ _).

* Substitutions/substitutivity l

Higher-Order Abstract Syntax |, &% e

constructor/since variables
are represented as

nat : tyi)e. selfApply = Az :term. match z with metalevel variables they
z : nat. : i
= . Aop = App 2 are implicitiwe cannot

| Abs f = f (Abs f) Example from: erte.def1n1t1ons which
plus : nat -> nat -> nat -> type. bad = selfApply (Abs selfApply) Chlipala, PHOAS mention them explicitly

%mode plus +X1 +X2 -X3.

* Impossible to use in a
general-purpose proof

plus-z : plus z N2 N2.
plus-s : plus (s N1) N2 (s N3)
<— plus N1 N2 N3.

POPL
mark

Group from CMU's solution

Authors: Michael Ashley-Rollman, Karl Crary, and Robert Harper.

Parts addressed: 1 and 2.
Proof assistant / theorem prover used: Twelf.
Encoding technique: HOAS.

Figure 1. An example divergent term

assistant
* Restrictions on recursive
functions

HOAS is mostly a big win, but occasionally poses conundrums that have to be worked
around in clever ways (e.g., the problem of how to "isolate" a variable in the middle of
the context, needed for the transitivity/narrowing proof).

same" as the one using evaluation rules. One lesson from this discussion is that the
"adequacy gap" (i.e., the complexity of the adequacy theorem relating an LF
formalization to its paper presentation) can be of variable size and reasonable people
can differ on how big it can be before adequacy itself requires a formal proof. However,
in practice, Twelf users report that they tend not to bother thinking about this sort of
adequacy at all: rather, they formulate their definitions directly in LF.

et e e et et) wn o ot et e e e e 2 et 12 2 oy n rn + e
For example, logical relations arguments cannot be carried out (except via heavy
encodings), and the status of coinduction is uncertain. Work on lifting these limitations
is underway, but a usable system appears to be some way off.

J Autom Reasoning (2012) 48:43-105
DOI110.1007/s10817-010-9194-x

Hybrid

A Definitional Two-Level Approach to Reasoning
with Higher-Order Abstract Syntax

Amy Felty - Alberto Momigliano

Working in a model of HOAS

Received: 19 September 2008 / Accepted: 19 July 2010 / Published online: 7 August 2010
© Springer Science+Business Media B.V. 2010

Abstract Combining higher-order abstract syntax and (co)-induction in a logical
framework is well known to be problematic. We describe the theory and the practice
of a tool called Hybrid, within Isabelle/HOL and Coq, which aims to address many
of these difficulties. It allows object logics to be represented using higher-order
abstract syntax, and reasoned about using tactical theorem proving and principles
of (co)induction. Moreover, it is definitional, which guarantees consistency within
a classical type theory. The idea is to have a de Bruijn representation of A-terms
providing a definitional layer that allows the user to represent object languages using
higher-order abstract syntax, while offering tools for reasoning about them at the

Beluga/Contextual Modal Type Theory

% Terms
app : tm —> tm —> tm
lam : tp —> (tm —> tm) —>

% Values

value : tm —> type.

% Preservation
rec pres : [|- has_type E
fnd => fn s =>

case s of <«
. |- s_appl S1] =>
let [|- is_app D1 D2]
let [|- D1']
| |- is_app D1' D2]

| [|- s_app2 V S2] =>

let [|- is_app D1 D2]
let [|- D2']
| |- is_app D1 D2'
| [|- s_app3 V] =>
[let [|- is_app (is_lam
[|- (D1 _ D2

Distinguishes
\

tm. data
and computations:

/

Tl -=> [|- step E E'] -> [|- has_type E' TI

Recursive programs on the computation level

=d in
= pres [|- D1] [|- S1] in
= in
= pres [|- D2] [|- S2] in
\x. (\d. (D1 x d D2] =d in

Boxed value:
embedded into computations;
no computations inside

 Extension of HOAS with a
modality to talk about open
terms => expressivity

 Comes with a notion of
context morphisms

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka.
,Contextual Modal Type Theory” 2008
Pientka/Dunfield:

2010
Comparison with de Bruijn proofs:
Kaiser, Jonas, Brigitte Pientka, and Gert Smolka. "Relating
system F and LambdaZ2: A case study in Coq, Abella and
Beluga.” 2017
POPLMark Reloaded Challenge

https://link.springer.com/chapter/10.1007/978-3-642-14203-1_2
https://link.springer.com/chapter/10.1007/978-3-642-14203-1_2

Twelf

% Preservation
rec pres : [|- has_type ET] —> [|- step E E'] —> [|- has_type E' T] =
fn d => fn s =>
case s of
[|- s_appl S1] =>
let [|- is_app D1 D2] d in
let [|- D1'] = pres [|- D1] [|- S1] in
[|- is_app D1' D2]

| [|- s_app2 V S2] =>
let [|- is_app D1 D2] in

let [|- D2'] = pres [|- D2] [|- S2] in preserv : step EE' —> of ET —> of E' T —> type.
[|- is_app D1 D2'] %mode preserv +Dstep +Dof -Dof'.

1
o

preserv-app-1 I preserv
| [|- s_app3 V] => (step-app-1 (DstepEl : step E1 E1'))
o < - - ; (of-app (DofE2 : of E2 T2)
[let [|- is_app (is_lam (\x. (\d. (D1 x d)))) D2] =d in et & of Bl fareey T2 T
[|- (D1 _ D2)] (of-app DofE2 DofEl')

<- preserv DstepEl DofEl (DofEl' : of E1' (arrow T2 T)).

preserv-app-2 . preserv
(step—app-2 (DstepE2 : step E2 E2') (DvalEl : value E1))
(of-app (DofE2 : of E2 T2)
(DofE1 : of E1 (arrow T2 T)))
(of-app DofE2' DofEl)
<- preserv DstepE2 DofE2 (DofE2' : of E2' T2).

preserv-app-beta : preserv
(step—app-beta (Dval : value E2))
(of-app (DofE2 : of E2 T2)
(of-lam (([x] [dx] DofE x dx)

: {x : tm} {dx : of x T2} of (E x) T)))
Beluga (DofE E2 DofE2).

schema cxt = tm A;

inductive Sn : (I : cxt) {M : [+ tm A[]]} type =
| Acc : {T" : cxt}A: [+ tyl}{M : [- tm A[]]}

(M’ : [T+ tm A[J]1} {S : [T + step M M’]1} Sn [- M’])
— Sn [[" + M]

rec anti_renameSN : {I" : cxt}I" : cxt} {p : [I" k4 I'1}M : [T + tm A[]]}
SN I - M[p]] — SN [+ M] =
/ total s (anti_renameSN I' I A p M s) /
mlam I', I, p, M = fn s = case s of
| SAbs s’ =
SAbs (anti_renameSN [[', x:tm _] [I”, x:tm _] [, x:tm _ - p[.], x
] I, x:tm _ F _] s?)
| SNeu s’ = SNeu (anti_renameSNe [I7 + p] [[C - M] s?)
| SRed r’ s’ =
let SNRed’ [['] [I] [F N] r = anti_renameSNRed [_] [_] [[" - p] [_
F _1zrin
let s’ = anti_renameSN [[] [['] [I" - p] [+ N] s? in
SRed r s’

N
We ak H O AS * Admits larger function spaces

Parameter Var : Set.
Inductive tm : Set :=
var : Var -> tm

| app:tm->tm->tm
| lam: (Var->tm)->tm.

Ax.x (Ay.xy)
Example ex : tm := lam (fun x => app
(var x) (lam (fun y => app (var x)

(var y)))) .

Martin Hofmann. ,Semantical analysis of higher-order abstract syntax”. 1999.
Honsell, Miculan, Scagnetto — The Theory of Contexts for First Order and Higher Order

Abstract Syntax, 2002
Adequacy: Miculan — Developing (meta)theory of lambda-calculus in the Theory of Contexts

Inductive subst [N:tm] : (Var->tm) -> tm -> Prop :=
subst_var : (subst N var N)
| subst_void : (y:Var)(subst N [_:Varly y)

| subst_app : (M1,M2:Var->tm)(M1’,M2’:tm)

(subst N M1 M1’) -> (subst N M2 M2’) ->

(subst N [y:Var](app (M1 y) (M2 y)) (app M1’ M2’))
| subst_lam : (M:Var->Var->tm) (M’:Var->tm)

((z:Var) (subst N [y:Var](M y z) (M’ z2))) —>

(subst N [y:Var](lam (M y)) (lam M’)).

Thus, a term M’ is syntactically equal to the substitution M(z)[N/z| iff
(subst N M M’) holds. More formally, the (proof-irrelevant) adequacy of
subst is as follows:

Proposition 3.2 Let X be a finite set of variables and x a variable not in - Requlres again adequacy
X. Let NyM' € Ax and M € Axyyy. Then:

M[N/z]=M' <= Txt _: (subst ex(N) [x:Varlexu} (M) ex(M'))

Honsell, Miculan, Scagnetto — The Theory of Contexts for First Order and Higher Order Abstract
Syntax, 2002

Parameter Var : Set.

Inductive tm : Set :=
var : Var -> tm

| app:tm->tm->tm

| lam: (Var->tm)->tm.

Inductive countvars : tm -> nat -> Prop :=
| cv _var x : countvars (var x) 1
| cv _app s t m n: countvars s m
-> countvars t n -> countvars (app s t) (m + n)

| cv lam £ n: forall x, countvars (f x) n -> countvars (lam f) n.

Fixpoint countvars (t : tm) : nat :=
match t with
| var => 1

X
| app s t => countvars s + countvars t
| lam f => countvars (f ?) end.

Parametric Higher-Order Abstract

Syntax (PHOAS)

Section tm.
Variable var : Type.

Inductive tm : Type :=

| Var : var -> tm

| App' : tm -> tm -> tm

| Abs' : (var -> tm) -> tm.

End tm.

Definition Tm := forall X, tm X.

Fixpoint count (e: tm unit) : nat :=
match e with
| Var x => 1

| App' s t => count s + count t
| Abs' s => count (s tt) end.
Definition Count (e : Tm) : nat :=

count (e unit).

Washburn, Geoffrey, and Stephanie Weirich. "Boxes go bananas: Encoding higher-order abstract syntax with
parametric polymorphism." ACM SIGPLAN Notices 38.9 (2003): 249-262.

Chlipala, Adam. "Parametric higher-order abstract syntax for mechanized semantics." Proceedings of the 13th ACM
SIGPLAN international conference on Functional programming. 2008.

Proof of adequacy: Atkey, Syntax For Free: Representing Syntax with Binding using Parametricity

Substitution

Fixpoint subst {X: Type} (s : tm (tm X)) :=
match s with

| Var x => x

| App' s t => App' (subst s) (subst t)

| Abs' s => Abs' (fun x => subst (s (Var x)))

end.

Definition Subst (s : forall X, X -> tm X) (t : Tm) : Tm :=

fun X => subst (s (t X)).

Syntax For Free: Representing Syntax with
Binding using Parametricity

Ro‘ vl xa‘!-.u, wars s
The reason that this approach works is that System F terms of type Va.T must

bob.ai act parametrically in o, that is, they cannot reflect on what actual instantiation
School of Informati of o they have been provided with. Reynolds [16] formalised this idea by stating
that for any two instantiations of a, parametric terms must preserve all relations

between them.

Abstract. We show that, in a parametric model of polymorphism, the

type Va.((a - a) —» a) — (a > a — a) —
de Bruijn terms. That is, the type of closed hi
terms is isomorphic to a concrete representa
proof we have constructed a model of param
the Coq proof assistant. The proof of the theo:
over Kripke relations. We also investigate som
tation.

TYAVLLU AU UL U TAe aad VALA UWRS UL TT VU A U Y AT M UAVAL W U ae

The key to higher-order abstract syntax is that the meta-level variables that
are used to represent object-level variables are only used as variables, and cannot
be further analysed. Washburn and Weirich [18] noted that parametric type
abstraction, as available in System F, is a viable way of ensuring that represented
terms are well behaved. They consider the type

Vo.((a = a) 2 a) - (a— a— a) >«

and derive a fold operator and some reasoning principles from it. This type
captures the two operations of higher-order abstract syntax, the lam and the
app, but abstracts over the carrier type. Washburn and Weirich claim that this
type represents exactly the terms of the untyped A-calculus, but do not provide a
proof. Coquand and Huet [4] also state that this type represents untyped lambda
terms, also without proof. In this paper we provide such a proof.

Summary of the encoding techniques and tools used by the available submissions:

Alpha Prolog | Coq Twelf | ATS | Isabelle/HOL | Matita | Abella
de Bruijn Vouillon, Charguéraud (a) Berghofer
HOAS CcMU Gacek
Weak HOAS Ciaffaglione and Scagnetto
Hybrid Xi
Locally nameless Chlipala, Leroy, Charguéraud (b). Ricciotti
Named variables Stump
Nested abstract syntax Hirschowitz and Maggesi
Nominal Fairbairn Urban et al.

Many representations of term syntax with variable bindings have been used to formalize programming
language metatheory, but so far there is no clear consensus on which is the best representation. We

Scope
The scope of the workshop includes, but is not limited to:

Tool demonstrations: proof assistants, logical frameworks, visualizers, etc.

Libraries for programming language metatheory.

Formalization techniques, especially with respect to binding issues.

Analysis and comparison of solutions to the POPLmark challenge.

Examples of formalized programming language metatheory.

Proposals for new challenge problems that benchmark programming language work.

Summary of the encoding techniques and tools used by the available submissions:

Alpha Prolog | Coq Twelf | ATS | Isabelle/HOL | Matita | Abella
de Bruijn Vouillon, Charguéraud (a) Berghofer
HOAS CcMU Gacek
Weak HOAS Ciaffaglione and Scagnetto
Hybrid Xi
Locally nameless Chlipala, Leroy, Charguéraud (b). Ricciotti
Named variables Stump
Nested abstract syntax Hirschowitz and Maggesi
Nominal Fairbairn Urban et al.

Many representations of term syntax with variable bindings have been used to formalize programming
language metatheory, but so far there is no clear consensus on which is the best representation. We

Scope
The scope of the workshop includes, but is not limited to:

Tool demonstrations: proof assistants, logical frameworks, visualizers, etc.

Libraries for programming language metatheory.

Formalization techniques, especially with respect to binding issues.

Analysis and comparison of solutions to the POPLmark challenge.

Examples of formalized programming language metatheory.

Proposals for new challenge problems that benchmark programming language work.

Separating Bound and Free Variables

Kathrin Stark
SPLYV 2024

Mechanized Metatheory for the Masses:
The PopLMARK Challenge

Brian E. Aydemir!, Aaron Bohannon!, Matthew Fairbairn?, J. Nathan Foster!,
Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis!, Geoffrey
Washburn!, Stephanie Weirich!, and Steve Zdancewic!

! Department of Computer and Information Science, University of Pennsylvania
2 Computer Laboratory, University of Cambridge

Subversion Revision: 171
Document generated on: May 11, 2005 at 15:53

Abstract. How close are we to a world where every paper on program-
ming languages is accompanied by an electronic appendix with machine-
checked proofs?

We propose an initial set of benchmarks for measuring progress in this
area. Based on the metatheory of System F«., a typed lambda-calculus
with second-order polymorphism, subtyping, and records, these bench-
marks embody many aspects of programming languages that are chal-
lenging to formalize: variable binding at both the term and type levels,
syntactic forms with variable numbers of components (including binders),
and proofs demanding complex induction principles. We hope that these
benchmarks wil' ™ ~'= ~1- = £ Al - —mmemk sl Lo et Lel - -

for comparing ¢ Our conclusion from these experiments is that the relevant technology has
1 Introductior developed almost to the point where it can be widely used by language re-
Many proofs about ;. S€@rchers. We seek to push it over the threshold, making the use of proof tools
dious, with just a f - common practice in programming language research—mechanized metatheory

agement of many det

mistakes or overlook« for the masses.

are amplified aslang . .
letond 4o sonco ol ood 4 tioht oolots 13 14 41 and

De Bruin Syntax

Manipulations in the lambda calculus are often troublesome because of
the need for re-naming bound variables. For example, if a free variable in
an expesssion has to be replaced by a second expression, the Jdanger arises De Bruijn, Nicolaas Govert.
that some free variable of the second expression bears the same name as "Lambda calculus notation
a bound variable in the first one, with the effect that binding s introduced
where it is not intended. Another case of re-naming arises if we want to
establish the equivalence of two expressions in those situations where the
only diiference lies in the names of the bound variables (i.c. when the
equivalence is so-called x-equivalence).

with nameless dummies, a tool
for automatic formula
manipulation, with application
to the Church-Rosser
theorem." 1972

In particular in machine-manipulated lambda caleulus this re naming
activity involves n great deal of labour, both in machine time as in
programming effort. It seems to be worth-while to try to get rid of the
re-naming, or, rather, to get rid of names altogether.

Consider the following three criteria for a good notation:

(1) easy tc write and easy to read for the human reader;
(i1) easy to handle in metalingual discussion;
(iti) easy for the computer and for the computer programmer,

The system we shall develop here is claimed to be good for (ii) and

good for (iii). It is not claimed to be very good for (i); this means that
for computer work we shall want automatic translation from one of the
usual svstems to our present system at the input stage, and backwards

Equivariance:
A definition commutes with permutation.

Nominal Techniques

Working over an abstract sort of atoms - allowing

atom decl "name" freshness (#) and swapping two atoms
nominal_datatype "7" =
TyUnit
| TyArrow II7_II II7_II (II— — ;II 5@) —\
nominal_ datatype "term" = Ensures that the datatype
Var "name” , , ~— respects equivariance
| Lam x::"name" "7" e::"term" binds x in e ("A _: . " 50)
| App Iltermll mll
[} -

Abstracting over a new name A notion of support:

A finite set of variables
that the definition may
contain

supp x & {a | infinite {b | (a b) +x # x}}
There is also the derived notion for when an atom a is fresh for an x, defined as

a#x d=efa¢suppx

Nominal Logic, a first-oder theory of names and binders — Pitts 2003.

Nominal Unification, Urban, Pitts, Gabbay — 2004.

Nominal Techniques in Isabelle/ HOL. Urban/Tasson 2005.

General Bindings and Alpha-Equivalence in Nominal Isabelle, Urban/Kaliszyk ‘12

* Substitutions/substitutivity l

Higher-Order Abstract Syntax |, &% e

constructor/since variables
are represented as

nat : tyi)e. selfApply = Az :term. match z with metalevel variables they
z : nat. : e
s : nat -> nat. |Appzy = Appz y are lmphf}l'F/WG Cann.Ot

| Abs f = f (Abs f) Example from: erte.deﬁmtlons Whl-ch
plus : nat -> nat -> nat -> type. bad = selfApply (Abs selfApply) Chlipala, PHOAS mention them explicitly

%mode plus +X1 +X2 -X3.

* Impossible to use in a
general-purpose proof

plus-z : plus z N2 N2.
plus-s : plus (s N1) N2 (s N3)
<— plus N1 N2 N3.

POPL
mark

Group from CMU's solution

Authors: Michael Ashley-Rollman, Karl Crary, and Robert Harper.

Parts addressed: 1 and 2.
Proof assistant / theorem prover used: Twelf.
Encoding technique: HOAS.

Figure 1. An example divergent term assistant

* Restrictions on recursive
functions

HOAS is mostly a big win, but occasionally poses conundrums that have to be worked
around in clever ways (e.g., the problem of how to "isolate" a variable in the middle of
the context, needed for the transitivity/narrowing proof).

same" as the one using evaluation rules. One lesson from this discussion is that the
"adequacy gap" (i.e., the complexity of the adequacy theorem relating an LF
formalization to its paper presentation) can be of variable size and reasonable people
can differ on how big it can be before adequacy itself requires a formal proof. However,
in practice, Twelf users report that they tend not to bother thinking about this sort of
adequacy at all: rather, they formulate their definitions directly in LF.

et e e et et) wn o ot et e e e e 2 et 12 2 oy n rn + e
For example, logical relations arguments cannot be carried out (except via heavy
encodings), and the status of coinduction is uncertain. Work on lifting these limitations
is underway, but a usable system appears to be some way off.

Beluga/Contextual Modal Type Theory

% Terms Distinguishes

app : tm —> tm —> tm. 4\\\\\\\\\\\\
data

lam : tp — (tm —> tm) —> tm.
P Boxed value:

and computations: . :
% Values P embedded into computations;

LT I e EO2- / / no computations inside

" Preser"atiml‘ e s 1) 8 [i R i [G e o « Extension of HOAS with a
rec pres : [|- has_type - - step 'l == [|- has_type I = .
fn d => fn s = modality to talk ngut open
case s of < Recursive programs on the computation level terms => expressivity
[|- s_appl S1] = « Comes with a notion of
let [|- is_app D1 D2] = d in context morohisms
let [|- D1'] = pres [|- D1] [|- S1] in p

[|- is_app D1' D2] -

L S,—appz, L . , Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka.
tet : - 1ST§pp DL D2] = d dn , o o ,Contextual Modal Type Theory” 2008
tet [IT D2"] 7 = pres [|- D2] [|- S2] in Pientka/Dunfield:
| |- is_app D1 D2'] 2010
_ , Comparison with de Bruijn proofs:
| |1et|_sﬁp?§ \alpp:>i5 lam (\x. (\d. (01 x d)))) D2] = d in Kaiser, Jonas, Brigitte Pientka, and Geﬂ Smolka. "Relating
‘. l’_ S ‘ - ' ' T system F and LambdaZ2: A case study in Coq, Abella and
' T Beluga.” 2017
POPLMark Reloaded Challenge

https://link.springer.com/chapter/10.1007/978-3-642-14203-1_2
https://link.springer.com/chapter/10.1007/978-3-642-14203-1_2

Parametric Higher-Order Abstract

Syntax (PHOAS)

Section tm.
Variable var : Type.

Inductive tm : Type :=

| Var : var -> tm

| App' : tm -> tm -> tm

| Abs' : (var -> tm) -> tm.

End tm.

Definition Tm := forall X, tm X.

Fixpoint count (e: tm unit) : nat :=
match e with
| Var x => 1

| App' s t => count s + count t
| Abs' s => count (s tt) end.
Definition Count (e : Tm) : nat :=

count (e unit).

Washburn, Geoffrey, and Stephanie Weirich. "Boxes go bananas: Encoding higher-order abstract syntax with
parametric polymorphism." ACM SIGPLAN Notices 38.9 (2003): 249-262.

Chlipala, Adam. "Parametric higher-order abstract syntax for mechanized semantics." Proceedings of the 13th ACM
SIGPLAN international conference on Functional programming. 2008.

Proof of adequacy: Atkey, Syntax For Free: Representing Syntax with Binding using Parametricity

Summary of the encoding techniques and tools used by the available submissions:

Alpha Prolog | Coq Twelf | ATS | Isabelle/HOL | Matita | Abella
de Bruijn Vouillon, Charguéraud (a) Berghofer
HOAS CcMU Gacek
Weak HOAS Ciaffaglione and Scagnetto
Hybrid Xi
Locally nameless Chlipala, Leroy, Charguéraud (b). Ricciotti
Named variables Stump
Nested abstract syntax Hirschowitz and Maggesi
Nominal Fairbairn Urban et al.

Many representations of term syntax with variable bindings have been used to formalize programming
language metatheory, but so far there is no clear consensus on which is the best representation. We

Scope

The scope of the workshop includes, but is not limited to:

Tool demonstrations: proof assistants, logical frameworks, visualizers, etc.

Libraries for programming language metatheory.

Formalization techniques, especially with respect to binding issues.

Analysis and comparison of solutions to the POPLmark challenge.

Examples of formalized programming language metatheory.

Proposals for new challenge problems that benchmark programming language work.

Locally Named Syntax

Inductive typ Set :=

| typ base typ

| typ arrow typ -> typ —-> typ.

Inductive exp Set :=

| bvar name -> exp (* bound variables *)
| fvar name -> exp (* free variables *)
| abs binder -> exp -> exp

| app exp —-> exp —-> exp.

Example term: A x.z (1 y.(x y) z)

W

(fvar “z”) (lam
(fvar “y”))))

abs (app (app

X//)

<" (app
(bvar \\y//))

Some Lambda Calculus and Type Theory Formalized, McKinna/Pollack ‘99

Closure under a-conversion One of Coquand’s original motiva-
tions for distinguishing between variables and parameters was to avoid
the need to reason about a-conversion; many of the arguments below
(Church-Rosser, standardisation, subject reduction) achieve this goal.

- ~

(bvar

Some Lambda Calculus and Type

The terms of a PL, Trm, ranged over by M, N, A, ..., E, a, b, are Theory Formalized. McKinna/Pollack
given by the grammar ’

‘99
M = v |p]|s atoms: variable, parameter, sort

| v:M|M | {v:M}M binders: lambda, pi

| MM application
[a/pla = if(p=g,a,q) .
[a/pla TN o € VV, SS —_ Substitution of parameters
la/p](v:BYb 2 (v:]a/p|B)[a/p]b => No binding instances in terms!
la/pl(MN) = [a/pIM [a/p|N -

Substitution of a for a variable, v, in M, written [a/v]M (formally
vsub), does respect hiding of bound instances from substitution, but ——

does not prevent capture.
[a/v]x 2 if(v=r,a,z) — Note:
[a/v]a 2 a « € PP, SS Not capture-
[a/v]{z:B)b = (x:[a/v]B)if(v=z,b, [a/v]b) avoiding
[a/v)(MN) £ [a/v]M [a/v]N -

p¢gM = [N/p|[p/v]M = [N/v]JM , (vsub_is_psub_alpha)

Usual invariant:
A term 1s closed,

1.e. all bound variables are in scope.

VCL-ATOM Vclosed(c) o € PPUSS

Vclosed(A) Vclosed([p/v]B)
VCL-BIND
Vclosed((v:A)B)
Vclosed(A) Vclosed(B)
VcCL-APP

Vclosed(AB)

Table 1: Inductive definition of the relation Vclosed.

B (Ax.M)N — [N/z]M Vclosed(N)

What is a good induction principle for
closed terms?

aVclosed(A) Vp . aVclosed([p/v]B)
AVCL-BIND
aVclosed((v:A)B)

ments. Induction over aVclosed is the principle which Melham and

Gordon rediscovered as a consequence of their Axiom 4 (Unique Itera-
tion) [GM96, Section 3.2].

Equivalence of Vclosed and aVclosed

(aVclosed Vclosed,
Vclosed aVclosed)

VA . aVclosed(A) < Vclosed(A).

Some Lambda Calculus and Type Theory Formalized, McKinna/Pollack ‘99

where [w;:q]w; and [w;:q]w, have no common Redn-reduct. James McKinna claims that
the correct CR theorem for Redn is

{A,B1,Br|Trm}(Vclosed A)->(Redn A Bl)->(Redn A Br)->
Ex2 [C1,Cr:Trm] and3 (Redn Bl Cl) (Redn Br Cr) (alpha_conv Cl Cr);

Another possible solution is to change the definition of redl or Redn to contain
alpha_conv. Then it would be provable that par _redn and Redn are the same relation, thus
proving the CR theorem for ordinary beta-reduction. The choice between these two approaches
is an informal question: does the informal notion of reduction contain alpha-conversion or
not?

Pollack, Robert. The Theory of LEGO. Diss. University of
Edinburgh, 1995.

B-reduction has the
diamond property only
up to a conversion

Locally Nameless Syntax

Inductive typ : Set :=
| typ base : typ

| typ arrow : typ -> typ

Inductive exp : Set :=

| bvar : nat -> exp (* bound variables *)
fvar : name -> exp (* free variables *)

|
| abs : exp -> exp
|

app : exp -> exp -> exp.

Example term: A x.z (1 y.(x y) z)

abs (app (fvar z) (lam
0)) (fvar z))))

G. Huet. The Constructive Engine. ‘89

(app

R. Pollack. Closure under alpha-conversion. ‘93
| am not a number- | am a free variable — Conor McBride, James McKinna ‘04
Aydemir et al., Engineering Formal Metatheory ‘08

-> typ.

(app

(bvar 1)

(bvar

Usual invariant:
A term 1s locally closed,
1.e. all bound variables are in scope.

data Expr = FName — free variables
| Bint — bound variables
| Expr:$Expr — application
| Expr:— Scope — V-quantification
deriving (Show, Eq)

newtype Scope = Scope Expr deriving (Show, Eq)

Explicit distinction in McBride/McKinna ‘04

Syntax:

S, T = A|Th—-T
t,u,w = bvari | fvarxz | appt1 t2 | abst
E,F,G = @ | E,z:T

Well-formed environments (no duplicate names):

ok E. z¢dom(E)
ok g OKNL ok (B, 2T OK-CONS
Free variables:
FV(bvar) = O
FV(fvar x) = {z}
FV(app t1 t2) = FV(tl) U FV(t2)
FV(abs t) = FV(t)

Substitution of a term for a free name:

bvar ¢

aar x whenzx # 2

app ([z — ujt1) ([z — u]t2)
abs ([z — u|t)

[z — u] (bvar 1)

[z — u] (fvar 2)

[z — u] (fvar z)

[z — u] (app 1 t2)
[z — u]| (abs t)

Locally closed terms:

term t1 term to

TERM-VAR
term (app t1 t2)

—_— TERM-APP
term (fvar x)

z ¢ FV(t) term (t%)
term (abs t)

TERM-ABS

Open: t* = {0 — u}t, with

{k — u} (bvar k)
{k — u} (bvar 1)
{k — u} (fvar)

{k — u} (app t1 t2)
{k — u} (abs t)

l_Y_J

Note: Only works if 0 is the only unbound index

gvari
fvar x
app ({k — u} t1) ({k — u} t2)
abs ({(k+1) — u}t)

when ¢ # k

Close: *t = {0 « z}t, with

{k < z} (bvar 1)

{k « z} (fvar x)

{k — z} (fvar y)

{k — x} (app t1 t2)
{k — z} (abs t)

bvar ¢

bvar k

fvary whenz # y

app ({k <z} t1) ({k — x}2)
abs ({(k+ 1) «— z}t)

From: Aydemir et al., Engineering Formal Metatheory

Typing:
ok E (x:T) € E
E ‘- fvarx : T
ErFty:S-T Ert: S
El—appt1 to : T
£E¢FV(t) E,CB:Tl + tm . T2
Etabst: T — 15

TYPING-VAR

TYPING-APP

TYPING-ABS

Call-by-value evaluation:

term (abs t)

———— = VALUE-ABS
value (abs t)

term (abs t) value u
app (abs t) u — t*

RED-BETA

t1 — t] term to

RED-APP-1
app t1 ta — app t] to

/
value t1 to — tg

RED-APP-2
app t1 ta — app t1 ts

Type soundness lemmas (preservation and progress):

Ert: T = t+—t

= Ert:T

GrFt: T = (valuet vV 3t t+—t)

From: Aydemir et al., Engineering Formal Metatheory

Cofinite Quantification

Locally closed terms:

term t1 term to

TERM-VAR TERM-APP

term (fvar x) term (app t1 t2)

z ¢ FV(t) term (%)
term (abs t)

TERM-ABS

Typing:
ok E (x:T) e E
Etlfvarx : T

Erts: S—>T ErFty: S
Etappti ta: T

x ¢ FV(t) E,xc:Th - t*: Ty
E"QbSt:Tl—)Tz

TYPING-VAR

TYPING-APP

TYPING-ABS

P TR C-TERM-VAR

term. t1 term. to
term. (app t1 t2)

Vx & L. term. (t%)
term. (abs t)

C-TERM-APP

C-TERM-ABS

ok E (x:T)€e E
Etr.fvarz : T

Ert.t1:S—-T Ebrl.ty: S

C-TYPING-VAR

C-TYPING-APP
E Fc.appty ta : T

Ve ¢ L. (E,z:Ty bc t° : T)
EFcabst : Th —T>

C-TYPING-ABS

- Literature Review/Comparison of Different Versions of Locally

Named/Locally Nameless:

 Aydemir, Brian, et al. "Engineering formal metatheory." ACM SigPlan notices 43.1

(2008): 3-15.

- Comparison of different variants of locally nameless (different sorts, collapsed,

tagged)

* Brian Aydemir, Stephan A. Zdancewic, and Stephanie Weirich. Abstracting syntax.

20009.

Taeaa asmer w w U assanemasnv e Lasmet Vasw L] LVwAsa SaL LA A assaseas] wwa vasawaes

The infrastructure part sets up the machinery required for the
core lemmas and consists of several components:

1. Language-specific specializations of tactics for working with
cofinite quantification, e.g., to automatically choose a set L
when applying a rule that uses cofinite quantification.

2. Proofs about properties of substitution (Figure 2).

3. Proofs that local closure is preserved by various operations, e.g.,
substitution (Section 3.3).

4. Regularity lemmas which state that relations contain only lo-
cally closed terms (Section 3.3).

5. Hints to enable Coq’s automation to use regularity lemmas.

392
alphabet of constants. Now add these 2; te that aiphavet, and evaluate
{S(..., as, 22, x1; D))

This is a namefrec expression; if we proclaim the z;’s to be variables
again, it becomes an intermediate expression where the free variables
have names but the bound variables are nameless. it we want to have
names for the bound variables too, we have to modify S slightly. We take
an infinite store of letters vy, yo, ... (different from the o’s and different
from the constants), and we take a modified form of (6.1}, Any time we
peb to apply (6.1) we take a fresh ¥ (i.e. one that has net been used before)
and we replace the right-hand side of (6.1) by

De Bruijn, Nicolaas Govert. "Lambda calculus notation with
nameless dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem." 1972

Locally Nameless Sets

ANDREW M. PITTS, University of Cambridge, UK

This paper provides a new mathematical foundation for the locally nameless representation of syntax with
binders, one informed by nominal techniques. It gives an equational axiomatization of two key locally nameless
operations, “variable opening” and “variable closing” and shows that a lot of the locally nameless infrastructure
can be defined from that in a syntax-independent way, including crucially a “shift” functor for name binding.
That functor operates on a category whose objects we call locally nameless sets. Functors combining shift with
sums and products have initial algebras that recover the usual locally nameless representation of syntax with
binders in the finitary case. We demonstrate this by uniformly constructing such an initial locally nameless
set for each instance of Plotkin’s notion of binding signature. We also show by example that the shift functor
is useful for locally nameless sets of a semantic rather than a syntactic character. The category of locally
nameless sets is proved to be isomorphic to a known topos of finitely supported M-sets, where M is the full
transformation monoid on a countably infinite set. A corollary of the proof is that several categories that have
been used in the literature to model variable renaming operations on syntax with binders are all equivalent to
each other and to the category of locally nameless sets.

Here we address not so much the engineering aspects of the locally nameless approach, but
rather its mathematical foundations. We abstract from existing concrete uses of the locally nameless
representation a so-far unnoticed algebraic structure (the opening/closing algebra of Sect. 2.2) and
show that it can be used to give a purely equational development of many of the key notions
in the locally nameless approach (Sects 2 and 4). Why is this useful? For one thing, equational
logic has proved very useful in computer science and algorithmic techniques for it are highly
developed. Founding the locally nameless method on a relatively simple algebraic theory should
facilitate development of logic and type theory designed to make it easier to deploy the locally
nameless approach in practice (for example, by making invisible to the user some "boilerplate”
aspects of the locally nameless method). However, there is a more immediately useful outcome:
we are able to give an account of the locally nameless version of name binding (in the form of the

ALhifi fassnntnsw AL Cant 2 A\ thhnt nvallinng $a auhitunsas S lannlles sanvmanlana anda? MALaitina 20\ A d At

Conclusion?

Kathrin Stark
SPLYV 2024

Summary of the encoding techniques and tools used by the available submissions:

Alpha Prolog | Coq Twelf | ATS | Isabelle/HOL | Matita | Abella
de Bruijn Vouillon, Charguéraud (a) Berghofer
HOAS CcMU Gacek
Weak HOAS Ciaffaglione and Scagnetto
Hybrid Xi
Locally nameless Chlipala, Leroy, Charguéraud (b). Ricciotti
Named variables Stump
Nested abstract syntax Hirschowitz and Maggesi
Nominal Fairbairn Urban et al.

Many representations of term syntax with variable bindings have been used to formalize programming
language metatheory, but so far there is no clear consensus on which is the best representation. We

T . T e 1

Scope
The scope of the workshop includes, but is not limited to:

Tool demonstrations: proof assistants, logical frameworks, visualizers, etc.

Libraries for programming language metatheory.

Formalization techniques, especially with respect to binding issues.

Analysis and comparison of solutions to the POPLmark challenge.

Examples of formalized programming language metatheory.

Proposals for new challenge problems that benchmark programming language work.

What to expect

- A short peek in different binder approaches:
Pure de Bruin, scoped de Bruijn, intrinsically typed, monadic,
HOAS/CMTT, PHOAS, nominal, locally nameless

What not to expect:
- Completeness in any direction

- Less about tools/theoretical foundations

Some Comparisons

- Aydemair et al.: Mechanized Metatheory for the Masses: The PoplMark Challenge
2005

- Berghofer/Urban: A Head-to-Head Comparison of de Bruijn Indices and
Names 2007

- Abel et al. - POPLMark Reloaded: Mechanizing Proofs by Logical Relations 2019

- Aydemir et al. Engineering Formal Metatheory. 2008.

- Brian Aydemir, Stephan A. Zdancewic, and Stephanie Weirich. Abstracting
syntax. 2009.

2021

- Popescu, Andrei. "Nominal Recursors as Epi-Recursors." Proceedings of the
ACM on Programming Languages 8.POPL (2024):

https://www.seas.upenn.edu/~plclub/poplmark/
https://poplmark-reloaded.github.io/
https://jesper.sikanda.be/posts/1001-syntax-representations.html

Criteria
POPLMark Challenge

— The technology should impose reasonable overheads. We accept that there is
a cost to formalization, and our goal is not to be able to prove things more
easily than by hand (although that would certainly be welcome). We are
willing to spend more time and effort to use the proof infrastructure, but
the overhead of doing so must not be prohibitive. (For example, as we discuss
below, our experience is that explicit de Bruijn-indexed representations of
variable binding structure fail this test.)

— The technology should be transparent. The representation strategy and proof
assistant syntax should not depart too radically from the usual conventions
familiar to the technical audience, and the content of the theorems them-
selves should be apparent to someone not deeply familiar with the theorem
proving technology used or the representation strategy chosen.

— The technology should have a reasonable cost of entry. The infrastructure
should be usable (after, say, one semester of training) by someone who is
knowledgeable about programming language theory but not an expert in
theorem prover technology.

» First-order representation: does the representation avoid the use of meta-
level functions as part of the data structure? If not, it can be difficult or

impossible to do things like checking equality of terms or pretty-printing.

* Named variables: When | write down a piece of syntax, are variables

. > Thi .
Bare DeBr LoNa Nom PHOAS WTDB WTDB+N EreshL NaPa ASG NomPa CoDB CoDB+N represented by their names or anonymously? This provides some measure of

Firstorder X X X X X X X X readability by humans.
representatlon
Named
variables
Enforces a-
equivalence
Enforces well-
scopedness
No mixing of X X X X X .
scopes * Enforces well-scopedness: Does the representation enforce that names can
Enforces
freshness
Abstract
interface
Strengthening * No mixing of scopes: Does the representation enforce that a name that
is no-op

X X X X X X X X X

» Enforces a-equivalence: Does the representation enforce that two a-
X X X X X X X

equivalent terms are treated in the same way?

X X X X only be used when they are in fact in scope?

comes from one scope is not used in a different scope?

* Abstract interface: Does the representation provide an abstract interface that

can be instantiated in different ways?

» Enforces freshness: Does the representation allow us to require that names
must be fresh at certain positions in the syntax?
https://jesper.sikanda.be/posts/1001-syntax-

1"epresentations ‘html « Strengthening is no-op: Can we remove unused names from the scope
without having to change the syntax?

https://jesper.sikanda.be/posts/1001-syntax-representations.html
https://jesper.sikanda.be/posts/1001-syntax-representations.html

Abstracfc In‘perfaces

record NomPa : Set; where

comstructor mk -- Converting back and forth between names and binders

B .
infixr 5 <. A scope name® : V {a} b — Name (b <)
infix 3 _C._ p
infix 2 _#_ -- There is no name in the empty world
/ —Name® : — (Name 0)

field

-- Abstract types for worlds, names, and binders —-— Two names can be compared; a binder and a name can be compared

World : Set ==N_ :V {a} (x y : Name a) — Bool

Name : World — Set export" : V {@ b} — Name (b < &) — Name (b < @) & Name «

Binder : Set

N -- The fresh-for relation
-~ : (a B : World) — Set

@ >V B = Name & — Name B -#_ : Binder — World — Set
#) : Vb —>Db#0
field suc# : V {a b} - b# a— (sucBb) # (b <)
-- Constructing worlds
0 : World -- World inclusion
d : Binder — World — World _C_ : World — World — Set
coerce' : V {a B} = (& C B) — (a =V B)
-- An infinite set of binders C-refl : Reflexive _C_
zergB: Binder C-trans : Transitive _C_
suc® : Binder — Binder c-0 .Y {a} 5 0Ca
C-q :V{aBtb—oaCpB - (baa)C (b<«f)
data Tm @ : Set where C-# :V{ab} 2b#ta—al (baa)

\' : Name ¢ - Tm o
ot Tma — Tmo — Tm
:Vb—o>Tm(b<aa) > Tna

A Unified Treatment of Syntax with Binders, Pouillard/Pottier ‘12

L

Which proof assistant do you use?
© Quotients?
- Do you require (admitting) classical reasoning?
- Automation?
- Are you ok with using a special-purpose proof assistant?
- What are available tools/libraries?
- Has somebody proven similar results; e.g. on a subset of the language?

Do you care about provmg theorems about the meta-theory or about writing
terms in the language?

How much do you care about readability?
Do you care about performance?
How much do you need to know about the reasoning principles?

What kind of binders do you want to formalise?
+ Are full binders used — or just quantifiers?
+ Linear Logic?

Author (chronological order)

Toward a General Theory of Names, Binding and Scope

James Cheney
University of Edinburgh
Edinburgh, United Kingdom
jcheney@inf.ed.ac.uk

Abstract

High-level formalisms for reasoning about names and binding such
as de Bruijn indices, various flavors of higher-order abstract syntax,
the Theory of Contexts, and nominal abstract syntax address only
one relatively restrictive form of scoping: namely, unary lexical
scoping, in which the scope of a (single) bound name is a subtree
of the abstract syntax tree (possibly with other subtrees removed
due to shadowing). Many languages exhibit binding or renaming
structure that does not fit this mold. Examples include binding
transitions in the 7r-calculus; unique identifiers in contexts, mem-
ory heaps, and XML documents; declaration scoping in modules
and namespaces; anonymous identifiers in automata, type schemes,
and Horn clauses; and pattern matching and mutual recursion con-
structs in functional languages. In these cases, it appears necessary

Representation used

the tedious details attendant upon formalizations of abstract syntax
with bound names have been proposed. These include name-free
such as i and de Bruijn ions [7]
as well as higher-order approaches such as higher-order abstract
syntax [20], weak higher-order abstract syntax [8], and lambda-
term abstract syntax [14]. Another recently proposed technique is
the approach of Gabbay and Pitts [10], which focuses on alpha-
ized in terms of and freshne:
Additional techniques such as Hybrid [18], the Theory of Con-
texts [11], and FOA2Y [16] have also recently been proposed. In
this paper we employ nominal abstract syntax, a simplified form of
nominal logic [21].
Scope is a fundamental concept when discussing binding. If we
view a syntax representation as an abstract data structure, then the

| Lemmas 1A Proof steps 1A | Lemmas

+ Something else?

Vouillon de Bruijn
X Leroy locally nameless
Do you need to manipulate the context? Stump levels/names
Hirschowitz & Maggesi de Bruijn (nested datatype)
Do you care about (formalizing) adequacy? Chlipala locally nameless

Our development

locally nameless

30 402
49 495
56 938
49 1574
23 75
22 101

Do you want renamings to be first-class? Injective renamings?
Respecting renaming/substitutivity?
Binder approach = Representation of Syntax + Substitutions + Reasoning

Principles
+ For example: variants of locally nameless; de Bruijn, well scoped de Bruijn...

Figure 5. Comparison of Coq submissions to the POPLMARK Challenge

