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Definition (Labeled Transition Systems)
A labeled transition system is a tuple of the form
pS, Act,Ñ, S0, AP, Lq, where S is a set of states, S0 Ď S a subset of
initial states, Act is a set (of actions), ÑĎ ActˆS ˆ S is a
(transition) relation, AP is a set (of atomic propositions) and
L : S Ñ PowpAPq is a (labeling) function.
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S “ tred, green, yellowu, S0 “ red
Act “ t*u
Ñ“ tp˚, red, greenq, p˚, green, yellowq, p˚, yellow, redqu
AP “ L “ H.



Example: Traffic Light

Modelling Protocols 10/66

S “ tred, green, yellowu, S0 “ red
Act “ t*u
Ñ“ tp˚, red, greenq, p˚, green, yellowq, p˚, yellow, redqu
AP “ L “ H.



Example: Traffic Light

Modelling Protocols 10/66

S “ tred, green, yellowu, S0 “ red
Act “ t*u
Ñ“ tp˚, red, greenq, p˚, green, yellowq, p˚, yellow, redqu
AP “ L “ H.



Two Traffic Lights

Modelling Protocols 11/66

Act “ tϵ, button pressed, no button pressedu
AP “ tPedestrians can go, Cars can gou
L “ cars: red, walk: green ÞÑ tPedestrians can gou, . . .



Two Traffic Lights

Modelling Protocols 11/66

Act “ tϵ, button pressed, no button pressedu
AP “ tPedestrians can go, Cars can gou
L “ cars: red, walk: green ÞÑ tPedestrians can gou, . . .



Interleaving

Modelling Protocols 12/66

Two traffic lights Ü One LTS

Definition (Interleaving)
Let TSi “ pSi , Acti ,Ñi , S0,i , APi , Liq, i “ 1, 2 be two transition
systems. We define the transition system TS1~TS2 :“
pS1 ˆ S2, Act1YAct2,Ñ, S0,1 ˆ S0,2, AP1YAP2, L1 ˆ L2q, where
L1 ˆ L2 : S1 ˆ S2 Ñ PowpAP1YAP2q is defined as
pL1 ˆ L2qps1, s2q “ L1ps1q Y L2ps2q and Ñ is defined by

s1 Ñ
α
1 s 1

1
ps1, s2q Ñ

α ps 1
1, s2q

s2 Ñ
α
2 s 1

2
ps1, s2q Ñ

α ps1, s 1
2q .

We call this construction the interleaving of TS1 and TS2.

Note that this means the two TS are independent
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Definition (Handshake)
Let TSi “ pSi , Acti ,Ñi , S0,i , APi , Liq, i “ 1, 2 be two transition
systems and H Ď Act1XAct2. We define the transition system
TS1 ∥H TS2 :“ pS1 ˆ S2, Act1YAct2,Ñ
, S0,1 ˆ S0,2, AP1YAP2, L1 ˆ L2q, where Ñ is defined by:

s1 Ñ
α
1 s 1

1 α R H
ps1, s2q Ñ

α ps 1
1, s2q

s2 Ñ
α
1 s 1

2 α R H
ps1, s2q Ñ

α ps1, s 1
2q

s1 Ñ
α
1 s 1

1 s2 Ñ
α
2 s 1

2 α P H
ps1, s2q Ñ

α ps 1
1, s 1

2q

We call this the parallel composition with handshake H. When
H “ Act1XAct2, we omit H.
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TS ‰ Graphs

Visualization (graphs): very useful!

Definition (Predecessors/Successors)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. For
s P S, α P Act, we define
Postps, αq :“ ts 1 P S | s Ñα s 1u, Postpsq :“

Ť

αPAct Postps, αq as
the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. We call the
directed graph GpTSq “ pS, E q the state graph of TS, where
E “ ts, s 1 P S ˆ S | s P S, s 1 P Postpsqu
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Definition (Path fragments)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A sequence
π “ π0π1π2 . . . P pSqN is called a path fragment if
πi`1 P Postpπiq@i P N. It is called finite if it is a finite sequence
pπiq

N
i“0instead.

For a path fragment π, we denote the i-th element by πris and
similarly the sub-sequence pπkq

j
k“i by πri ..js

Sequences of transitions = path framgents through the state graph
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Definition (Initial path fragment)
A path fragment π is called initial, if it starts at an initial statei, i.e.
π0 P S0.

Definition (Maximal path fragment)
A path fragment π is called a maximal, if it is not a proper prefix
π Ĺ π1 of another path fragment π1, i.e. it cannot be extended.

Definition (Path)
A path fragment π is called a path if it is initial and maximal.
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Modeling end states with infinite paths

Assumption
For the rest of this course we assume no end states s with
Postpsq “ H.
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Paths fi sequences of states P S

Properties defined over AP, not S

Definition (Traces)
Let π be a path fragment. We define the trace of π as the sequence
Lpπq P pNÑ PowpAPqq as the sequence given by
pLpπqqi “ Lpπiq@i P N, and similarly for a finite path fragment. For
s P S we define Tracespsq as the set of traces for path fragments
starting at s, and TracespTSq “

Ť

sPS0
Tracespsq.
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Many notions of equivalence.

Today: one

Definition (Trace Equivalence)
Let TSi , i “ 1, 2 be two tranisition systems with AP1 “ AP2. We
say TS1 and TS2 are trace equivalent if
TracespTS1q “ TracespTS2q.
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int num = 11 * 23 * 8;
printf("Hello SPLV %d\n", num);
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#define N 100

proctype counter(int i){
do // repeats indefinitely
:: (i < N) -> i = i + 1 // guarded increase
:: (i >= N) -> break // break do loop
od
end: skip // declare a (valid) end state

}

init{
run counter(0)

}
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mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

active proctype TrafficLight(){
do
:: (walk == red && car == red) -> car = green
:: (walk == red && car == red) -> walk = green
:: (car == red && walk == green) -> walk = red
:: car == green -> car = yellow
:: car == yellow -> car = red
od

}
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mtype car = red;
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do
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mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

// Channel of size 0 = synchronous communication
chan press = [0] of {bool};

active proctype PedestrianButton(){
do
:: press!true // send `true`
:: press!false // send `false`
od

}
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active proctype TrafficLight(){
bool button_pressed = false;
do
:: (walk == red && car == red) ->

press?button_pressed; //receive pressed
if
:: button_pressed -> walk = green
:: !button_pressed -> car = green
fi

:: (car == red && walk == green) -> walk = red
:: car == green -> car = yellow
:: car == yellow -> car = red
od

}
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Core ideas:

States = Program locations (Loc) ˆ values of variables JΓK

Conditions over variables in context Γ: CondpΓq
(propositional logic)
conditional transition relation:

ãÑ Ď CondpΓq ˆ Actˆ Locˆ Loc

Transition relation from this:

l ãÑg ,α l 1 η |ù g
pl , ηq Ñα pl 1, pJαKqpηqq
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bool flag[2]; //flag for entering critical section
byte num_crit; //how many processes in critical section

active [2] proctype user() // two processes
{
do
::

flag[_pid] = 1;
flag[1 - _pid] == 0 ->

num_crit = num_crit + 1; // enter
num_crit = num_crit - 1; // exit

flag[_pid] = 0;
od
}
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mtype = {request, response, nil}

proctype Router(chan buffer_from, buffer_to){
mtype msg = nil;
do /* a router just keeps forwarding messages */
:: buffer_from?msg -> buffer_to!msg
od

}
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Modeling Languages: An Introduction to Promela 42/66

proctype EndPoint(chan buffer_from, buffer_to){
mtype msg = nil;
do
:: atomic{ (msg == nil) && buffer_from?[msg]
-> buffer_from?msg}
:: atomic{ (msg == request)
-> buffer_to!response; msg = nil }
:: atomic{ (msg == response) -> msg = nil }
:: buffer_to!request
od

}



Semantics of channels
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Core idea:

Extend actions Act with set of communication actions
Comm
Comm: Actions c!v and c?x to send value v on channel c
and receive into variable x .
Multiple program graphs: composition (∥) with matching
actions built from c?v/c!v pairs.
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Structures, e.g. groups, rings, fields, labeled transition
systems

Formulas in a given logic, e.g. a “ b, Dc , a ˚ c “ 1, lp␣pq
Models A |ù ϕ, i.e. the formula ϕ holds in the structure A
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Definition (LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A linear
property of TS is a set of traces, i.e. sequences P Ď APN over
atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (Satisfying an LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system and let P be
a linear time property. We say that TS satisfies P, in symbols,
TS |ù P, iff TracespTSq Ď P.
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atocmic propositions AP.

Idea: these are the admissible traces in TS
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♢ fi “Eventually”

⃝ fi “Next”

Y fi “Until”

Note: propositional logic (and LTL) has no quantifiers @, D
(!)
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LTL, Formally (Syntax)
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Definition (Syntax of LTL)
Let AP be a set (of atomic propositions). Then, an LTL formula
over AP is a word in the language defined by the grammar:

φ ::“ true | a | φ1 ^ φ2 | ␣φ | ⃝φ | φ1 Y φ2

We call the set of such formulae LTLAP. When AP is clear from
context, we also say φ is an LTL formula (and omit AP).



LTL, Formally (Semantics, I)
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Definition (The “Models” Relation)
We define |ù as the minimial relation over traces and LTL formulae
|ù Ď pNÑ PowpAPqq ˆ LTLAP, such that:

A |ù true
A |ù a P AP iff a P A0

A |ù φ1 ^ φ2 iff A |ù φ1 and A |ù φ2

A |ù ␣φ iff A |ù φ

A |ù ⃝ φ iff Ar1 . . .s “ A1A2 . . . |ù φ

A |ù φ1 Y φ2 iff Dj , Arj . . .s |ù φ2 and @i ă j , σri . . .s |ù φ1



LTL, Formally (Semantics, II)
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Definition (Semantics of LTL)
Let φ be an LTL formula over AP. We define
Wordspφq :“ tπ P Pow pAPqN | π |ù φu.

Definition
We say the transition system TS satisfies φ (in symbols, TS |ù φ),
if TracespTSq Ď Wordspφq.
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Definition (♢ Operator)
For an LTL formula φ, we define the operator ♢ as

♢φ :“ trueY φ

Definition (l Operator)
For an LTL formula φ, we define the operator l as

lφ :“ ␣♢␣φ
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Recall: we assumed no finite states

transformation is a deadlock check
no deadlock fi l␣capture-state
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Invariant (property does not change) fi lP

Examples:

mutual exclusion: never two process in critical section
lpcrit ă 2q
cars and pedestrians don’t go at the same time
lp␣cars can go_␣pederstrians can goq



Safety
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Other safety properties: bad prefix

Yellow should warn of red coming:
lp␣pyellow_ redq Ñ ⃝␣redq

Definition
An LT property P over AP is called a safety property, if for all
traces π P Pow pAPqN there exists a finite prefix π̂ Ă π such that
extensions of that prefix are disjoint from P, i.e.
tπ1 P Pow pAPqN | π̂ Ă π1u X P “ H



Fairness
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“Everybody gets their turn”

Unconditional l♢P (“Everybody gets their turn infinitely
often”)
Strong l♢P Ñ l♢Q (“Everybody who asks infinitely
often, goes infinitely often”)
Weak ♢lP Ñ l♢Q(“Everybody who is waiting from
some point on, gets their turn infinitely often”)
Fairness fi Unconditional ^ Strong ^ Weak

(Nondeterminism): Condition or constraint?
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Liveness Properties
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More generally, liveness are things of the type “good thing happen
infinitely often”

Traffic light’s let people through: l♢green
Mutex lets processes do their work: lpp♢crit1q ^ p♢crit2qq

Definition (Liveness — Alpern and Schneider)
An LT property P over AP is called a liveness property, if every
finite word can be extended to a trace in the property P, i.e. for all
π̂ P Pow pAPq˚ there exsits a π P P such that π̂ Ă π.



Decomposition
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Safety properties: constrain finite behavior
Liveness properties: constrain infinite behavior

Theorem
Let P be a linear time property P over AP, i.e. P Ď Pow pAPqN.
Then there exist a liveness property Plive and a safety property Psafe
over AP, such that P “ Plive X Psafe.



Decomposition Theorem
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Proof.
(Sketch) The metric

d : Pow pAPqN ˆ Pow pAPqN Ñ Rě0,

pπ, σq ÞÑ

"

0, if σ “ π
1

|gcppσ,πq|
, otherwise ,

where gcppσ, πq denotes the greatest common prefix of σ and π,
makes Pow pAPqN a metric space. Safety properties are the closed
sets of the induced topology. We have

P “ P̄
loomoon

:“Psafe

XP Y pPow pAPqNqzP̄q
loooooooooooomoooooooooooon

:“Plive
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Deadlocks: nothing additional! (end label)

LTL Formulae: never claims
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Example: Deadlock in Request-
Response
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A Word on Complexity
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Invariant checking (BFS) is linear in state space, formula,
transitions (still large spaces!).
General LTL model checking is PSPACE hard

Mitigations:
Partial order reduction

Symmetry reduction

Abstraction (gradual refinements)

Symbolic model checking

. . .
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