Protocol Verification

A Brief Introduction to Model Checking and Temporal Logic

Andrés Goens (U. of Amsterdam)

SPLV 2024 @ Strathclyde

29.07.2024 - 02.08.2024

Motivation 2/66

Protocol Verification?

Protocols

Examples of protocols

* Distributed systems (e.g. paxos) & :

Motivation 4/66

Protocols

Examples of protocols

* Distributed systems (e.g. paxos) & :

I.I

->
Hardware (e.g. cache coherence) I

Motivation 4/66

Protocols

Examples of protocols

- Distributed systems (e.g. paxos) 2

-8e

= Hardware (e.g. cache coherence) il € @

= Cryptographic protocols (e.g. TLS)

Motivation 4/66

Verification

Examples of properties

= Fairness

Motivation 5/66

Verification

Examples of properties

_ - | -
= Fairness
O
N
@ O
= Deadlock-freedom O
Motivation 5/66

Verification

Examples of properties

_ - | -
= Fairness
O
N
@ O
+ Deadlock-freedom O

= Safety

Motivation 5/66

Protocol Verification

What this course is about

deseription

=z
)—>V a O ->D

Proposition

A @wrw

Motivation

v

Ql — @O\

Y
Model / =

Checker
N X

No + Coun'te,rexample

6/66

Protocol Verification

What this course is about

deseription

=
)—>V 3 O->0

Proposition

AR @t

v

Ql — @O\

Model
Checker

/ Yes

Y
This is what we'll cover

Motivation

\%

No + Coun'te,rexample

6/66

Overview of the course

What you will (hopefully) know
by the end
= Labeled transition systems
(LTS)
= Modeling languages
(promela)
= (Propositional) Linear
Temporal Logic (LTL)
= Examples!

Motivation 7/66

- X
Overview of the course &

What you will (hopefully) know What you will not (necessarily)

by the end know by the end
= Labeled transition systems = Other logics (e.g. CTL*, i
(LTS) calculus)
= Modeling languages = How model checking works
(promela) internally (decision
= (Propositional) Linear procedures)

Temporal Logic (LTL)
= Examples!

Motivation 7/66

Modelling Protocols

Modelling Protocols 8/66

Labeled Transition Systems

Definition (Labeled Transition Systems)

A labeled transition system is a tuple of the form

(S,Act,—, So, AP, L), where S is a set of states, Sy < S a subset of
initial states, Act is a set (of actions), »< Act xS x S is a
(transition) relation, AP is a set (of atomic propositions) and

L:S — Pow(AP) is a (labeling) function.

Modelling Protocols 9/66

Example: Traffic Light

Modelling Protocols 10/66

Example: Traffic Light

Modelling Protocols 10/66

= S = {red, green, yellow}, Sy = red
= Act = {*}
= —= {(»,red, green), (x, green, yellow), (+, yellow, red)}
= AP=L=¢.
Modelling Protocols 10/66

Two Traffic Lights

car: red
walk: red

button
not
car: red pressed
walki green
Modelling Protocols 11/66

Two Traffic Lights

car: red
walk: red

= Act = {¢, button pressed, no button pressed}
= AP = {Pedestrians can go, Cars can go}

= L = cars: red, walk: green — {Pedestrians can go}, ...

Modelling Protocols 11/66

Interleaving
Two traffic lights <» One LTS

Modelling Protocols 12/66

Interleaving
Two traffic lights <» One LTS

Definition (Interleaving)

Let TS; = (Si, Actj, —i, So0,i, AP}, L), i = 1,2 be two transition
systems. We define the transition system TS| TS: :=

(51 X 52, Act; U Actp, —, 50,1 X 50,2, AP U APy, L1 x Lg), where
Ll X L2 o 51 X 52 — POW(APl U AP2) is defined as

(L1 x Lp)(s1,%2) = Li(s1) u La(s2) and — is defined by

/ /
s1 7 S 5 S

(51752) — (Sia52) (51?52) — (Slasé) :

We call this construction the interleaving of TS; and TS,.

Modelling Protocols 12/66

Interleaving
Two traffic lights <» One LTS

Definition (Interleaving)

Let TS; = (Si, Actj, —i, So0,i, AP}, L), i = 1,2 be two transition
systems. We define the transition system TS| TS: :=

(51 X 52, Act; U Actp, —, 50,1 X 50,2, AP U APy, L1 x Lg), where
Ll X L2 o 51 X 52 — POW(APl U AP2) is defined as

(L1 x Lp)(s1,%2) = Li(s1) u La(s2) and — is defined by

/ /
s1 7 S 5 S

(51752) — (Sia52) (51?52) — (Slasé) :

We call this construction the interleaving of TS; and TS,.

Note that this means the two TS are independent

Modelling Protocols 12/66

Example: Intearleaving

&
SHNERC A

Modelling Protocols 13/66

Example: Intearleaving

&
SHNERC A

Modelling Protocols 13/66

Parallel Composition

Definition (Handshake)
Let TS; = (Si, Actj, —i, So0,i, APj, L), i = 1,2 be two transition
systems and H < Act; n Actp. We define the transition system

TS HH TS, = (51 x 55, Act; U Acty, —
,S0.1 % So,2,AP1 UAP2, Ly x L), where — is defined by:

s1—¢s; a¢H s—fsy, a¢H
(s1,%) = (s1,82) (s1,%2) =% (s1,5))

s1—¢s s—%sy, aeH

(517 52) — (S:/lv Sé)

We call this the parallel composition with handshake H. When
H = Act; n Acty, we omit H.

Modelling Protocols

14/66

button
pressed | I
/
n
n
pressed

Modelling Protocols 15/66

button
pressed

Modelling Protocols 15/66

. X
Concurrency: Message Passing 4

Modelling Protocols 16/66

Concurrency: Message Passing

others flag = 0

eritical = 0

Modelling Protocols

Lother>

Slag = 0

critical = 0

Plag = 1

eritical = 0

Plag =

eritical = 0

16/66

. X
Concurrency: Message Passing 4

Assumption: atomicity of read-modify-writes here. Reasonable?

Modelling Protocols 16/66

MSI Cache Coherency Protocol &

Modelling Protocols 17/66

Cache Private Cache Private
Controller Data Cache Controller Data Cache

BUS
LLC/Memory Last-level
Controll Cache
ontroller e
Multicore Processor Chip
Main Memory

Source: Nagarajan, Vijay, et al. A primer on memory consistency and cache

coherence. Springer Nature, 2020.

Modelling Protocols 17/66

State Graph

= TS # Graphs

Modelling Protocols 18/66

State Graph

= TS # Graphs
"

Visualization (graphs): very useful!

Modelling Protocols 18/66

State Graph
= TS # Graphs

Visualization (graphs): very useful!

Definition (Predecessors/Successors)

Let TS = (S, Act,—, Sp, AP, L) be a transition system. For

s€ S, a € Act, we define

Post(s,) := {s' € 5| s = s}, Post(s) := | eact Post(s, @) as
the successors of s, and similarly Pre for the predecessors.

Modelling Protocols 18/66

State Graph
= TS # Graphs

Visualization (graphs): very useful!

Definition (Predecessors/Successors)

Let TS = (S, Act,—, Sp, AP, L) be a transition system. For

s€ S, a € Act, we define

Post(s,) := {s' € 5| s = s}, Post(s) := | eact Post(s, @) as
the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)

Let TS = (S, Act, —, So, AP, L) be a transition system. We call the
directed graph G(TS) = (S, E) the state graph of TS, where
E={s,s"eSxS|seS,s e€Post(s)}

Modelling Protocols 18/66

Path Fragments

Definition (Path fragments)

Let TS = (S, Act, —, So, AP, L) be a transition system. A sequence
T = momim2 ... € (S)y is called a path fragment if

mit+1 € Post(m;)Vi € N. It is called finite if it is a finite sequence
(7)) pinstead.

For a path fragment 7, we denote the i-th element by =[/] and
similarly the sub-sequence (mx),_; by 7[i..j]

Modelling Protocols 19/66

Path Fragments

Definition (Path fragments)

Let TS = (S, Act, —, So, AP, L) be a transition system. A sequence
T = momim2 ... € (S)y is called a path fragment if

mit+1 € Post(m;)Vi € N. It is called finite if it is a finite sequence
(7)) pinstead.

For a path fragment 7, we denote the i-th element by =[/] and
similarly the sub-sequence (mx),_; by 7[i..j]

Sequences of transitions = path framgents through the state graph

Modelling Protocols 19/66

Paths

Definition (Initial path fragment)

A path fragment 7 is called inijtial, if it starts at an initial statei, i.e.
7o € 50.

Modelling Protocols 20/66

Paths

Definition (Initial path fragment)

A path fragment 7 is called inijtial, if it starts at an initial statei, i.e.
7o € 50.

Definition (Maximal path fragment)

A path fragment 7 is called a maximal, if it is not a proper prefix
m = 7’ of another path fragment 7/, i.e. it cannot be extended.

Modelling Protocols 20/66

Paths

Definition (Initial path fragment)

A path fragment 7 is called inijtial, if it starts at an initial statei, i.e.
7o € 50.

Definition (Maximal path fragment)

A path fragment 7 is called a maximal, if it is not a proper prefix
m = 7’ of another path fragment 7/, i.e. it cannot be extended.

Definition (Path)

A path fragment 7 is called a path if it is initial and maximal.

Modelling Protocols 20/66
]

Modelling Protocols 21/66

A Typical Traffic Light in the UK?

Non-example
— T - -

Modelling Protocols

car red
—=(el red

21/66

Finite vs Infinite Paths

finite path fragments can be extended to infinite ones, but...

Modelling Protocols 22/66

Finite vs Infinite Paths

finite path fragments can be extended to infinite ones, but...

N
@

Modelling Protocols 22/66

Finite vs Infinite Paths

finite path fragments can be extended to infinite ones, but...

N
@

Post(s) = &

Modelling Protocols 22/66

End States

Modeling end states with infinite paths

N =
@1
D

Modelling Protocols 23/66

End States

Modeling end states with infinite paths

N =
@1
D

Assumption

For the rest of this course we assume no end states s with

Post(s) = .

Modelling Protocols 23/66

Traces

= Paths = sequences of states € S

Modelling Protocols 24/66

Traces

= Paths = sequences of states € S

= Properties defined over AP, not S

Definition (Traces)

Let m be a path fragment. We define the trace of 7 as the sequence
L(m) € (N — Pow(AP)) as the sequence given by

(L(m)); = L(m;)Vi € N, and similarly for a finite path fragment. For
s € S we define Traces(s) as the set of traces for path fragments
starting at s, and Traces(TS) = (J s, Traces(s).

Modelling Protocols 24/66

Example: Traces

; ac; vell
cari green car: yellow
—%

Corresponds to

car: yellow <ot red
walkiced) walki red

Modelling Protocols 25/66

Example: Traces

car: yellow
walk: red)— =

Corresponds to

\ car: yellow <ot red
walkiced) walki red

SCW'SCW"S,'O} — fcomscomﬂo}% §r — fcoxrscomﬁo}

- f:a\rsccmao} — @ —=

Modelling Protocols 25/66

Equivalence of LTSs

= Many notions of equivalence.

Modelling Protocols 26/66

Equivalence of LTSs

= Many notions of equivalence.

= Today: one

Definition (Trace Equivalence)

Let TS;,i = 1,2 be two tranisition systems with AP; = AP,. We
say TS; and TS, are trace equivalent if
Traces(TS1) = Traces(TSy).

Modelling Protocols 26/66

References

Main references for this course:
[‘, " Handbook
‘.‘L\ of Model
C DO émp C O

Checking

5L

Principles of Model Checking
™ Chste Bair and Joost-Piter Katoen

= Baier, Christel, and Joost-Pieter Katoen. Principles of
model checking. MIT press, 2008.

= Clarke, Edmund M., et al., eds. Handbook of model
checking. Vol. 10. Cham: Springer, 2018.

Modelling Protocols 27/66

Modeling Languages: An

Introductionto Promela

Modeling Languages: An Introduction to Promela 28/66

Modelling Languages

Core Idea
[1

L — LTS
Moa‘e[ing Labeled Troansition
Language Sys‘te,ms

w w

O - For
Pm‘tocol
ote_scr‘ip‘t‘.on

Modeling Languages: An Introduction to Promela 29/66

Promela

S Ehle!l!ed

= Spin: mature model checker (>30 years of development)

Modeling Languages: An Introduction to Promela 30/66

Promela

S Ehle!l‘(ed

Spin: mature model checker (>30 years of development)

-
= Promela = Protocol/cess meta language

Modeling Languages: An Introduction to Promela 30/66

Promela

S Ehle!l‘(ed

= Spin: mature model checker (>30 years of development)
= Promela = Protocol/cess meta language

= C-inspired syntax

Modeling Languages: An Introduction to Promela 30/66

Hello Promela

init{
int num = 11 * 23 * 8;
printf ("Hello SPLV %d\n", num);

Modeling Languages: An Introduction to Promela 31/66

Hello Promela

init{
int num = 11 * 23 * 8;
printf ("Hello SPLV %d\n", num);

splv24 x spin promela-examples/hello.pml

Hello SPLV 2024
1 process created

Modeling Languages: An Introduction to Promela 31/66

Do Blocks

#define N 100

proctype counter (int i){
do // repeats indefinitely
(1 <N) ->1i=1+1 // guarded increase
(i >= N) -> break // break do loop
od
end: skip // declare a (valid) end state

init{

run counter(0)

Modeling Languages: An Introduction to Promela 32/66

Promela: Traffic Lights

mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

active proctype TrafficLight(){

do
(walk == red && car == red) -> car = green
(walk == red && car == red) -> walk = green
(car == red && walk == green) -> walk = red
: car == green -> car = yellow
:: car == yellow —> car = red
od

Modeling Languages: An Introduction to Promela 33/66

Promela: Traffic Lights
mtype = {red, green, yellow}
mtype car = red;

mtype walk = red;

active proctype TrafficLight(){

do
(walk == red && car == red) -> car = green
(walk == red && car == red) -> walk = green
(car == red && walk == green) -> walk = red
: car == green -> car = yellow
:: car == yellow —> car = red
od

Modeling Languages: An Introduction to Promela 33/66

Composition

button
not
Fressed button
pressed
button —~
pressed ”
Recall: - e
Modeling Languages: An Introduction to Promela 34/66

Communication (Channels)

mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

// Channel of size 0 = synchronous communication
chan press = [0] of {bool};

active proctype PedestrianButton(){
do
:: press!true // send “true’
:: press!false // send “false®
od

Modeling Languages: An Introduction to Promela 35/66
]

Communication (Channels) contd. ¥

active proctype TrafficLight(){
bool button_pressed = false;
do
(walk == red && car == red) ->
press?button_pressed; //receive pressed
if
:: button_pressed —> walk
'button_pressed -> car = green

green

fi

(car == red && walk == green) -> walk = red
car == green —> car = yellow

car == yellow -> car = red

od

Modeling Languages: An Introduction to Promela 36/66

Program Graphs

[1 TS
Moo!e_hnS,
{—0\“3“0\36 me'ram La.l::e,le_o! Transition
Gmr‘cxphs Sys‘t ems

Modeling Languages: An Introduction to Promela 37/66

Program Graphs (ctd.)

Core ideas:

= States = Program locations (Loc) x values of variables [I]

Modeling Languages: An Introduction to Promela 38/66

Program Graphs (ctd.)

Core ideas:

= States = Program locations (Loc) x values of variables [I]

= Conditions over variables in context I': Cond(I)
(propositional logic)

Modeling Languages: An Introduction to Promela 38/66

Program Graphs (ctd.)

Core ideas:

= States = Program locations (Loc) x values of variables [I]

= Conditions over variables in context I': Cond(I)
(propositional logic)

= conditional transition relation:

— < Cond(I") x Act x Loc x Loc

Modeling Languages: An Introduction to Promela 38/66

Program Graphs (ctd.)

Core ideas:
-

-

"

States = Program locations (Loc) x values of variables [I']

Conditions over variables in context I': Cond(I')
(propositional logic)

conditional transition relation:

— < Cond(I") x Act x Loc x Loc

Transition relation from this:

=&l nEg
(1,m) = (I', ([a])(n))

Modeling Languages: An Introduction to Promela 38/66

Example: MP Concurrency &

X

bool flagl2]; //flag for entering critical section
byte num_crit; //how many processes in critical section

active [2] proctype user() // two processes

{
do

flag[_pid] = 1;
flag[l - _pid] == 0 —>
num_crit = num_crit + 1; // enter
num_crit = num_crit - 1; // exit
flag[_pid] = 0;
od

Modeling Languages: An Introduction to Promela 39/66

Example: Buffers

EndPoint Router

EnrJoin‘t

Modeling Languages: An Introduction to Promela 40/66

Example: Buffersin Promela

mtype = {request, response, nil}

proctype Router(chan buffer_from, buffer_to){
mtype msg = nil;
do /* a router just keeps forwarding messages */
:: buffer_from?’msg -> buffer_to!msg
od

Modeling Languages: An Introduction to Promela 41/66

Example: Buffersin Promela (ctd.) ¥

proctype EndPoint(chan buffer_from, buffer_to){

mtype msg = nil;

do

:: atomic{ (msg == nil) && buffer_from? [msg]
-> buffer_from?msg}

:: atomic{ (msg == request)

-> buffer_to!response; msg = nil }

:: atomic{ (msg == response) -> msg = nil }
:: buffer_to!request

od

Modeling Languages: An Introduction to Promela 42/66

Semantics of channels

Core idea:

Modeling Languages: An Introduction to Promela 43/66

Semantics of channels

Core idea:

= Extend actions Act with set of communication actions
Comm

Modeling Languages: An Introduction to Promela 43/66

Semantics of channels

Core idea:

= Extend actions Act with set of communication actions
Comm

= Comm: Actions clv and ¢c?x to send value v on channel ¢
and receive into variable x.

Modeling Languages: An Introduction to Promela

43/66

Semantics of channels

Core idea:

= Extend actions Act with set of communication actions
Comm

= Comm: Actions clv and ¢c?x to send value v on channel ¢
and receive into variable x.

= Multiple program graphs: composition (||) with matching
actions built from c?v/clv pairs.

Modeling Languages: An Introduction to Promela

43/66

Modelling Properties

Modelling Properties 44/66

Models

What is a model?

Modelling Properties 45/66

Models

What is a model?

Modelling Properties 45/66

Model Theory 101

= Structures, e.g. groups, rings, fields, labeled transition
systems

Modelling Properties 46/66

Model Theory 101

= Structures, e.g. groups, rings, fields, labeled transition
systems

= Formulas in a given logic, e.g. a = b, 3c,a+c =1, [(—p)

Modelling Properties 46/66

Model Theory 101

"

Structures, e.g. groups, rings, fields, labeled transition
systems

= Formulas in a given logic, e.g. a = b, 3c,a+c =1, [(—p)
Models A |= ¢, i.e. the formula ¢ holds in the structure A

I.I

Modelling Properties 46/66
]

(Modal) Logic

= Propositional logic (P, Q,..., v, A,—)

Modelling Properties 47/66

(Modal) Logic

= Propositional logic (P, Q,..., v, A,—)
= First-order logic (P, Q,..., v, A,—,3,V)

Modelling Properties 47/66

(Modal) Logic

= Propositional logic (P, Q,..., v, A,—)
= First-order logic (P, Q,..., v, A,—,3,V)
= Modal logic (...,[], Q)

= [~ necessity

* O =~ possibility

Modelling Properties 47/66

Linear-Time Properties

Definition (LT Property)

Let TS = (S, Act,—, Sp, AP, L) be a transition system. A linear
property of TS is a set of traces, i.e. sequences P = APN over
atocmic propositions AP.

Modelling Properties 48/66

Linear-Time Properties

Definition (LT Property)

Let TS = (S, Act,—, Sp, AP, L) be a transition system. A linear
property of TS is a set of traces, i.e. sequences P = APN over
atocmic propositions AP.

Idea: these are the admissible traces in TS

Modelling Properties 48/66

- - - X
Linear-Time Properties G

Let TS = (S, Act,—, Sp, AP, L) be a transition system. A linear
property of TS is a set of traces, i.e. sequences P = APN over
atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (Satisfying an LT Property)

Let TS = (S, Act, —, So, AP, L) be a transition system and let P be
a linear time property. We say that TS satisfies P, in symbols,
TS = P, iff Traces(TS) < P.

Modelling Properties 48/66

Linear Temporal Logic (intro)

= Propositional logic + modal operators

(P,Q,...,V,/\,_‘,O,U,D,Q)

Modelling Properties 49/66

Linear Temporal Logic (intro)

= Propositional logic + modal operators

(P,Q,...,v,~n,— O,u,,90)
* = “Always”
= O = “Eventually”
* O = “Next”

v = “Until”

Modelling Properties

49/66

Linear Temporal Logic (intro)

= Propositional logic + modal operators

(P,Q,...,v,~n,— O,u,,90)
* [0 = “Always”
= O = “Eventually”
* O = “Next”
* U= “Until"

= Note: propositional logic (and LTL) has no quantifiers V, 3

()

Modelling Properties 49/66

Intuition of LTL Operators

e
= peAP
= (O = “Next"
= [= "Always"
= O = “Eventually”
= U= “Until"

Modelling Properties

50/66

3 Ope

Eventually”

-

= O

= = “Always”
O

= U= “Until"

Modelling Properties

50/66

Oe
= peAP
= (O = “Next -
= [= “Always”
= { = “Eventually”
= U= "“Until"

Modelling Properties

50/66

”EAT ,. w
= “Eventually” OO0 Q

= “Until” Oa

Modelling Properties

50/66

pe APN

“Until”

Modelling Properties 50/66

Example: Safety

car: red
walk: red

car: red
walki green

“Cars and Pederstrians can never go at the same time '

Modelling Properties 51/66

Example: Safety

car: red
walk: red

car: red
walki green

LI

“Cars and Pederstrians can never go at the same time " =
[1—(cars can go A pedestrians can go)

Modelling Properties 51/66

LTL, Formally (Syntax)

Definition (Syntax of LTL)

Let AP be a set (of atomic propositions). Then, an LTL formula
over AP is a word in the language defined by the grammar:

pu=true|alpr A2 | =@ | Op |1 u e

We call the set of such formulae LTLap. When AP is clear from
context, we also say ¢ is an LTL formula (and omit AP).

Modelling Properties 52/66

LTL, Formally (Semantics, I)

Definition (The “Models” Relation)

We define |= as the minimial relation over traces and LTL formulae
E < (N — Pow(AP)) x LTLap, such that:

A = true

AlEacAP iffac Ay

Ak p1 Apr iff A= and A= ¢

Ak —p iff AB=¢

AE Qg iff A[1...] = A1Ax... =

AEpiups iff3), Aj...]Ep2andVi<j, oli...] E¢1

Modelling Properties 53/66

LTL, Formally (Semantics, Il) &

Definition (Semantics of LTL)

Let v be an LTL formula over AP. We define
Words(y) := {r € Pow (AP) | 7 = ¢}.

Modelling Properties 54/66

LTL, Formally (Semantics, Il) &

Definition (Semantics of LTL)

Let v be an LTL formula over AP. We define
Words(y) := {r € Pow (AP) | 7 = ¢}.

We say the transition system TS satisfies ¢ (in symbols, TS = ¢),
if Traces(TS) < Words(y).

Modelling Properties 54/66

Temporal Modalities

Definition (¢ Operator)

For an LTL formula ¢, we define the operator ¢ as

Qp = true u @

Modelling Properties 55/66

Temporal Modalities &

Definition (¢ Operator)

For an LTL formula ¢, we define the operator ¢ as

Qp = true u @

Definition (CJ Operator)

For an LTL formula ¢, we define the operator [] as

Oy :== —0—¢

Modelling Properties 55/66

Deadlocks

Recall: O

Modelling Properties 56/66

Deadlocks

OO O
% 5

Temporal logic?

Recall:

Modelling Properties 56/66

Deadlocks

OO O
% 5

Temporal logic?

Recall:

Recall: we assumed no finite states

Modelling Properties 56/66

Deadlocks

OO O
% 5

Temporal logic?

Recall:

Recall: we assumed no finite states

= transformation is a deadlock check

Modelling Properties 56/66

Deadlocks

OO O
% 5

Temporal logic?

Recall:

Recall: we assumed no finite states
= transformation is a deadlock check

= no deadlock = [J—capture-state

Modelling Properties 56/66

Invariants

Invariant (property does not change) = [P

Examples:
= mutual exclusion: never two process in critical section
C(crit < 2)

= cars and pedestrians don't go at the same time
[)(—cars can go v —pederstrians can go)

Modelling Properties 57/66

Safety

Other safety properties: bad prefix

= Yellow should warn of red coming:

C1(—(yellow v red) — (O)—red)

Definition

An LT property P over AP is called a safety property, if for all
traces 7 € Pow (AP)" there exists a finite prefix # = 7 such that
extensions of that prefix are disjoint from P, i.e.

{r' e Pow (AP)N | #c 7} n P = &

Modelling Properties 58/66

Fairness

“Everybody gets their turn”

= Unconditional [JOP (“Everybody gets their turn infinitely
often”)

Strong [1OP — [10Q (“Everybody who asks infinitely
often, goes infinitely often”)

= Weak O[IP — 1O Q(“Everybody who is waiting from
some point on, gets their turn infinitely often”)

I.I

I.I

Fairness = Unconditional A Strong A Weak

Modelling Properties 59/66

Fairness

“Everybody gets their turn”

= Unconditional [JOP (“Everybody gets their turn infinitely
often”)

Strong [1OP — [10Q (“Everybody who asks infinitely
often, goes infinitely often”)

= Weak O[IP — 1O Q(“Everybody who is waiting from
some point on, gets their turn infinitely often”)

I.I

= Fairness = Unconditional A Strong A Weak

(Nondeterminism): Condition or constraint?

Modelling Properties 59/66
GGG

Liveness Properties

More generally, liveness are things of the type “good thing happen
infinitely often”

= Traffic light's let people through: [J{green
= Mutex lets processes do their work: [J((Ocrity) A (Ocrit))

Definition (Liveness — Alpern and Schneider)

An LT property P over AP is called a liveness property, if every
finite word can be extended to a trace in the property P, i.e. for all
7 € Pow (AP)* there exsits a 7 € P such that # = 7.

Modelling Properties 60/66

Decomposition

= Safety properties: constrain finite behavior
= Liveness properties: constrain infinite behavior

Let P be a linear time property P over AP, i.e. P < Pow (AP)N.

Then there exist a liveness property Pj,e and a safety property Psafe
over AP, such that P = Pjj e N Psste.

Modelling Properties

61/66
BRSO

Decomposition Theorem

(Sketch) The metric

d : Pow (AP)Y x Pow (AP)Y — R,
(r.0)— {

0, ifo=m

Wlaﬂ'”’ otherwise ’

where gcp(o,) denotes the greatest common prefix of o and T,

makes Pow (AP)N a metric space. Safety properties are the closed

sets of the induced topology. We have
P=_P_nPu(Pow(AP)")\P)

‘=Fsafe :=Plive

Modelling Properties 62/66

Model Checking with Spin

= Deadlocks: nothing additional! (end label)

Modelling Properties 63/66

Model Checking with Spin

-
-

Deadlocks: nothing additional! (end label)

LTL Formulae: never claims

-f LTL Translate the LTL formula LTL into a never claim.

This option reads a formula in LTL syntax from the second arqument and translates

it into Promela syntax (a never
tomaton). The LTL operators are written: []

(strong until). There is no X (next) operator, to secure compatibility with the

partial order reduction rules that are applied during the verification
If the formula contains spaces, it should be quoted to form a single argument to
the SPIN command.

This option has 1 been replaced with the support for inline sp
1tl formula, in Spin version 6.0.

Modelling Properties

63/66

xample: Safety in Traffic Li

Spin Ve

6 December 2019 ::iSpin Version 1.1.4 -- 27 November 2014.

mRun_ <

safety
safety @ exhaustive
v +invalid endstates (deadlock)

v +assertion violations + collapse compression

+Xr7xs assertions hash-compact
Liveness Never Claims
non-progress cycles donot use a never claim or It
* acceptance cycles © use daim

enforce weak fairness constraint

claim name (opt): warning

Run

n

5 active proctype TrafficLight(){

6

7 ed) -> car = green
s ed) -> walk = green
o reen) -> walk = red
10 green -> car = yellow

11 yellow -> car = red

12

13 }

14

Storage Mode

-+ minimized automata (slow)

bitstate/supertrace

n_ R

Search Mode

+ depth-first search
v + partial order reduction
+ bounded context switching

ith bound:|0
it boun Error Advanced

+iterative search for short trail Trapping

breadth-first search

Parameter

property

v + partial order reduction
¥ report unreachable code

pan.out

s on memory usage (in
0.001 equivalent memory usage for states (stored" (State-vector + overhead))
0.290 actual memory usage for states

128.000 memory used for hash table (-w24)
0.53¢ memory used for DFS stack (-m10000)

128.730 1ol

al actual memory usage

pan: elapsed time 0 seconds
To replay the error-trail, goto Simulate/Replay

ind select "Ru

Modelling Properties

64/66

Example: Deadlock in Request-

Safety
+ safety
© + invalid endstates (deadlock)

¥ +assertion violations

Spin \

rsion 6.5.2 - 6 December 2019 ::iSpin |

Swarm Run
Storage Mode
* exhaustive

+ minimized automata (slow)

+ collapse compression

+xr/xs assertions hash-compact

Liveness Never Claims
non-progress cycles
acceptance cycles use claim

enforce weak fairmess constraint

claim name (opt):

R

1 mtype = {request, response, nil}

2

3 proctype EndPolnt(chan buffer_from, buffer_to){

4 mtype msg = nil;

5 do /* non-determinstically, an EndPoint can do one of the follo
wing : */

5 / read a"msg’ from the buffer */

7 : atomic{ (msg == nll) & buffer_from?[msg] -> buffer_from?
msg}

s 7 if it recelved a request, send a response */

9 /" this atomicity might make a difference for deadiock */

10 : atomic{ (msg == request) -> buffer_tolresponse; msg = nil }
11 /" If it received a response, consume it */

bitstate/supertrace

“ donot use a never claim or Itl property

Modelling Properties

Search Mode
+ depth-first search

 + partial order reduction
+ bounded context switching
with bound: 0
+ terative search for short trail
breadth-first search
@ + partial order reduction
¥ report unreachable code

pan.out
ition result:
request_response.pml
024-02 -DXUSAFE -DSAFETY
pan -m10000
Pid: 53672
pan: wrote request_response.pm.trail

(Spin Version 6.5.2 -- 6 December 2019)

ng: Search not completed
der Reduction

ce search for

Shy

Advanced

NOCLAIM -w -0

65/66

A Word on Complexity &

= Invariant checking (BFS) is linear in state space, formula,
transitions (still large spaces!).

= General LTL model checking is PSPACE hard

Modelling Properties 66/66

A Word on Complexity &

= Invariant checking (BFS) is linear in state space, formula,
transitions (still large spaces!).

= General LTL model checking is PSPACE hard
= Mitigations:
= Partial order reduction

Symmetry reduction

nm

* Abstraction (gradual refinements)

-

Symbolic model checking

Modelling Properties 66/66

	Motivation
	Modelling Protocols
	Modeling Languages: An Introduction to Promela
	Modelling Properties

