
Protocol Verification
A Brief Introduction to Model Checking and Temporal Logic

Andrés Goens (U. of Amsterdam)
SPLV 2024 @ Strathclyde

29.07.2024 - 02.08.2024

Motivation 2/66

Motivation

Protocol Verification?

Motivation 3/66

Protocols

Motivation 4/66

Examples of protocols

Distributed systems (e.g. paxos)

Hardware (e.g. cache coherence)

Cryptographic protocols (e.g. TLS)

Protocols

Motivation 4/66

Examples of protocols

Distributed systems (e.g. paxos)

Hardware (e.g. cache coherence)

Cryptographic protocols (e.g. TLS)

Protocols

Motivation 4/66

Examples of protocols

Distributed systems (e.g. paxos)

Hardware (e.g. cache coherence)

Cryptographic protocols (e.g. TLS)

Verification

Motivation 5/66

Examples of properties

Fairness

Deadlock-freedom

Safety

Verification

Motivation 5/66

Examples of properties

Fairness

Deadlock-freedom

Safety

Verification

Motivation 5/66

Examples of properties

Fairness

Deadlock-freedom

Safety

Protocol Verification

Motivation 6/66

What this course is about

looooooooooooooooooooomooooooooooooooooooooon

This is what we’ll cover

Protocol Verification

Motivation 6/66

What this course is about

looooooooooooooooooooomooooooooooooooooooooon

This is what we’ll cover

Overview of the course

Motivation 7/66

What you will (hopefully) know
by the end

Labeled transition systems
(LTS)
Modeling languages
(promela)
(Propositional) Linear
Temporal Logic (LTL)
Examples!

What you will not (necessarily)
know by the end

Other logics (e.g. CTL*, µ
calculus)
How model checking works
internally (decision
procedures)

Overview of the course

Motivation 7/66

What you will (hopefully) know
by the end

Labeled transition systems
(LTS)
Modeling languages
(promela)
(Propositional) Linear
Temporal Logic (LTL)
Examples!

What you will not (necessarily)
know by the end

Other logics (e.g. CTL*, µ
calculus)
How model checking works
internally (decision
procedures)

Modelling Protocols 8/66

Modelling Protocols

Labeled Transition Systems

Modelling Protocols 9/66

Definition (Labeled Transition Systems)
A labeled transition system is a tuple of the form
pS, Act,Ñ, S0, AP, Lq, where S is a set of states, S0 Ď S a subset of
initial states, Act is a set (of actions), ÑĎ ActˆS ˆ S is a
(transition) relation, AP is a set (of atomic propositions) and
L : S Ñ PowpAPq is a (labeling) function.

Example: Traffic Light

Modelling Protocols 10/66

S “ tred, green, yellowu, S0 “ red
Act “ t*u
Ñ“ tp˚, red, greenq, p˚, green, yellowq, p˚, yellow, redqu
AP “ L “ H.

Example: Traffic Light

Modelling Protocols 10/66

S “ tred, green, yellowu, S0 “ red
Act “ t*u
Ñ“ tp˚, red, greenq, p˚, green, yellowq, p˚, yellow, redqu
AP “ L “ H.

Example: Traffic Light

Modelling Protocols 10/66

S “ tred, green, yellowu, S0 “ red
Act “ t*u
Ñ“ tp˚, red, greenq, p˚, green, yellowq, p˚, yellow, redqu
AP “ L “ H.

Two Traffic Lights

Modelling Protocols 11/66

Act “ tϵ, button pressed, no button pressedu
AP “ tPedestrians can go, Cars can gou
L “ cars: red, walk: green ÞÑ tPedestrians can gou, . . .

Two Traffic Lights

Modelling Protocols 11/66

Act “ tϵ, button pressed, no button pressedu
AP “ tPedestrians can go, Cars can gou
L “ cars: red, walk: green ÞÑ tPedestrians can gou, . . .

Interleaving

Modelling Protocols 12/66

Two traffic lights Ü One LTS

Definition (Interleaving)
Let TSi “ pSi , Acti ,Ñi , S0,i , APi , Liq, i “ 1, 2 be two transition
systems. We define the transition system TS1~TS2 :“
pS1 ˆ S2, Act1YAct2,Ñ, S0,1 ˆ S0,2, AP1YAP2, L1 ˆ L2q, where
L1 ˆ L2 : S1 ˆ S2 Ñ PowpAP1YAP2q is defined as
pL1 ˆ L2qps1, s2q “ L1ps1q Y L2ps2q and Ñ is defined by

s1 Ñ
α
1 s 1

1
ps1, s2q Ñ

α ps 1
1, s2q

s2 Ñ
α
2 s 1

2
ps1, s2q Ñ

α ps1, s 1
2q .

We call this construction the interleaving of TS1 and TS2.

Note that this means the two TS are independent

Interleaving

Modelling Protocols 12/66

Two traffic lights Ü One LTS

Definition (Interleaving)
Let TSi “ pSi , Acti ,Ñi , S0,i , APi , Liq, i “ 1, 2 be two transition
systems. We define the transition system TS1~TS2 :“
pS1 ˆ S2, Act1YAct2,Ñ, S0,1 ˆ S0,2, AP1YAP2, L1 ˆ L2q, where
L1 ˆ L2 : S1 ˆ S2 Ñ PowpAP1YAP2q is defined as
pL1 ˆ L2qps1, s2q “ L1ps1q Y L2ps2q and Ñ is defined by

s1 Ñ
α
1 s 1

1
ps1, s2q Ñ

α ps 1
1, s2q

s2 Ñ
α
2 s 1

2
ps1, s2q Ñ

α ps1, s 1
2q .

We call this construction the interleaving of TS1 and TS2.

Note that this means the two TS are independent

Interleaving

Modelling Protocols 12/66

Two traffic lights Ü One LTS

Definition (Interleaving)
Let TSi “ pSi , Acti ,Ñi , S0,i , APi , Liq, i “ 1, 2 be two transition
systems. We define the transition system TS1~TS2 :“
pS1 ˆ S2, Act1YAct2,Ñ, S0,1 ˆ S0,2, AP1YAP2, L1 ˆ L2q, where
L1 ˆ L2 : S1 ˆ S2 Ñ PowpAP1YAP2q is defined as
pL1 ˆ L2qps1, s2q “ L1ps1q Y L2ps2q and Ñ is defined by

s1 Ñ
α
1 s 1

1
ps1, s2q Ñ

α ps 1
1, s2q

s2 Ñ
α
2 s 1

2
ps1, s2q Ñ

α ps1, s 1
2q .

We call this construction the interleaving of TS1 and TS2.

Note that this means the two TS are independent

Example: Intearleaving

Modelling Protocols 13/66

~ “

Example: Intearleaving

Modelling Protocols 13/66

~ “

Parallel Composition

Modelling Protocols 14/66

Definition (Handshake)
Let TSi “ pSi , Acti ,Ñi , S0,i , APi , Liq, i “ 1, 2 be two transition
systems and H Ď Act1XAct2. We define the transition system
TS1 ∥H TS2 :“ pS1 ˆ S2, Act1YAct2,Ñ
, S0,1 ˆ S0,2, AP1YAP2, L1 ˆ L2q, where Ñ is defined by:

s1 Ñ
α
1 s 1

1 α R H
ps1, s2q Ñ

α ps 1
1, s2q

s2 Ñ
α
1 s 1

2 α R H
ps1, s2q Ñ

α ps1, s 1
2q

s1 Ñ
α
1 s 1

1 s2 Ñ
α
2 s 1

2 α P H
ps1, s2q Ñ

α ps 1
1, s 1

2q

We call this the parallel composition with handshake H. When
H “ Act1XAct2, we omit H.

Two Traffic Lights, revisited

Modelling Protocols 15/66

Two Traffic Lights, revisited

Modelling Protocols 15/66

Concurrency: Message Passing

Modelling Protocols 16/66

∥

“

Assumption: atomicity of read-modify-writes here. Reasonable?

Concurrency: Message Passing

Modelling Protocols 16/66

∥ “

Assumption: atomicity of read-modify-writes here. Reasonable?

Concurrency: Message Passing

Modelling Protocols 16/66

∥ “

Assumption: atomicity of read-modify-writes here. Reasonable?

MSI Cache Coherency Protocol

Modelling Protocols 17/66

Source: Nagarajan, Vijay, et al. A primer on memory consistency and cache

coherence. Springer Nature, 2020.

MSI Cache Coherency Protocol

Modelling Protocols 17/66

Source: Nagarajan, Vijay, et al. A primer on memory consistency and cache

coherence. Springer Nature, 2020.

State Graph

Modelling Protocols 18/66

TS ‰ Graphs

Visualization (graphs): very useful!

Definition (Predecessors/Successors)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. For
s P S, α P Act, we define
Postps, αq :“ ts 1 P S | s Ñα s 1u, Postpsq :“

Ť

αPAct Postps, αq as
the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. We call the
directed graph GpTSq “ pS, E q the state graph of TS, where
E “ ts, s 1 P S ˆ S | s P S, s 1 P Postpsqu

State Graph

Modelling Protocols 18/66

TS ‰ Graphs
Visualization (graphs): very useful!

Definition (Predecessors/Successors)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. For
s P S, α P Act, we define
Postps, αq :“ ts 1 P S | s Ñα s 1u, Postpsq :“

Ť

αPAct Postps, αq as
the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. We call the
directed graph GpTSq “ pS, E q the state graph of TS, where
E “ ts, s 1 P S ˆ S | s P S, s 1 P Postpsqu

State Graph

Modelling Protocols 18/66

TS ‰ Graphs
Visualization (graphs): very useful!

Definition (Predecessors/Successors)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. For
s P S, α P Act, we define
Postps, αq :“ ts 1 P S | s Ñα s 1u, Postpsq :“

Ť

αPAct Postps, αq as
the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. We call the
directed graph GpTSq “ pS, E q the state graph of TS, where
E “ ts, s 1 P S ˆ S | s P S, s 1 P Postpsqu

State Graph

Modelling Protocols 18/66

TS ‰ Graphs
Visualization (graphs): very useful!

Definition (Predecessors/Successors)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. For
s P S, α P Act, we define
Postps, αq :“ ts 1 P S | s Ñα s 1u, Postpsq :“

Ť

αPAct Postps, αq as
the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. We call the
directed graph GpTSq “ pS, E q the state graph of TS, where
E “ ts, s 1 P S ˆ S | s P S, s 1 P Postpsqu

Path Fragments

Modelling Protocols 19/66

Definition (Path fragments)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A sequence
π “ π0π1π2 . . . P pSqN is called a path fragment if
πi`1 P Postpπiq@i P N. It is called finite if it is a finite sequence
pπiq

N
i“0instead.

For a path fragment π, we denote the i-th element by πris and
similarly the sub-sequence pπkq

j
k“i by πri ..js

Sequences of transitions = path framgents through the state graph

Path Fragments

Modelling Protocols 19/66

Definition (Path fragments)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A sequence
π “ π0π1π2 . . . P pSqN is called a path fragment if
πi`1 P Postpπiq@i P N. It is called finite if it is a finite sequence
pπiq

N
i“0instead.

For a path fragment π, we denote the i-th element by πris and
similarly the sub-sequence pπkq

j
k“i by πri ..js

Sequences of transitions = path framgents through the state graph

Paths

Modelling Protocols 20/66

Definition (Initial path fragment)
A path fragment π is called initial, if it starts at an initial statei, i.e.
π0 P S0.

Definition (Maximal path fragment)
A path fragment π is called a maximal, if it is not a proper prefix
π Ĺ π1 of another path fragment π1, i.e. it cannot be extended.

Definition (Path)
A path fragment π is called a path if it is initial and maximal.

Paths

Modelling Protocols 20/66

Definition (Initial path fragment)
A path fragment π is called initial, if it starts at an initial statei, i.e.
π0 P S0.

Definition (Maximal path fragment)
A path fragment π is called a maximal, if it is not a proper prefix
π Ĺ π1 of another path fragment π1, i.e. it cannot be extended.

Definition (Path)
A path fragment π is called a path if it is initial and maximal.

Paths

Modelling Protocols 20/66

Definition (Initial path fragment)
A path fragment π is called initial, if it starts at an initial statei, i.e.
π0 P S0.

Definition (Maximal path fragment)
A path fragment π is called a maximal, if it is not a proper prefix
π Ĺ π1 of another path fragment π1, i.e. it cannot be extended.

Definition (Path)
A path fragment π is called a path if it is initial and maximal.

Example: Paths in Traffic Light

Modelling Protocols 21/66

A Typical Traffic Light in the UK?

Non-example

Example: Paths in Traffic Light

Modelling Protocols 21/66

A Typical Traffic Light in the UK?

Non-example

Finite vs Infinite Paths

Modelling Protocols 22/66

finite path fragments can be extended to infinite ones, but...

Postpsq “ H

Finite vs Infinite Paths

Modelling Protocols 22/66

finite path fragments can be extended to infinite ones, but...

Postpsq “ H

Finite vs Infinite Paths

Modelling Protocols 22/66

finite path fragments can be extended to infinite ones, but...

Postpsq “ H

End States

Modelling Protocols 23/66

Modeling end states with infinite paths

Assumption
For the rest of this course we assume no end states s with
Postpsq “ H.

End States

Modelling Protocols 23/66

Modeling end states with infinite paths

Assumption
For the rest of this course we assume no end states s with
Postpsq “ H.

Traces

Modelling Protocols 24/66

Paths fi sequences of states P S

Properties defined over AP, not S

Definition (Traces)
Let π be a path fragment. We define the trace of π as the sequence
Lpπq P pNÑ PowpAPqq as the sequence given by
pLpπqqi “ Lpπiq@i P N, and similarly for a finite path fragment. For
s P S we define Tracespsq as the set of traces for path fragments
starting at s, and TracespTSq “

Ť

sPS0
Tracespsq.

Traces

Modelling Protocols 24/66

Paths fi sequences of states P S
Properties defined over AP, not S

Definition (Traces)
Let π be a path fragment. We define the trace of π as the sequence
Lpπq P pNÑ PowpAPqq as the sequence given by
pLpπqqi “ Lpπiq@i P N, and similarly for a finite path fragment. For
s P S we define Tracespsq as the set of traces for path fragments
starting at s, and TracespTSq “

Ť

sPS0
Tracespsq.

Example: Traces

Modelling Protocols 25/66

Corresponds to

Example: Traces

Modelling Protocols 25/66

Corresponds to

Equivalence of LTSs

Modelling Protocols 26/66

Many notions of equivalence.

Today: one

Definition (Trace Equivalence)
Let TSi , i “ 1, 2 be two tranisition systems with AP1 “ AP2. We
say TS1 and TS2 are trace equivalent if
TracespTS1q “ TracespTS2q.

Equivalence of LTSs

Modelling Protocols 26/66

Many notions of equivalence.
Today: one

Definition (Trace Equivalence)
Let TSi , i “ 1, 2 be two tranisition systems with AP1 “ AP2. We
say TS1 and TS2 are trace equivalent if
TracespTS1q “ TracespTS2q.

References

Modelling Protocols 27/66

Main references for this course:

Baier, Christel, and Joost-Pieter Katoen. Principles of
model checking. MIT press, 2008.
Clarke, Edmund M., et al., eds. Handbook of model
checking. Vol. 10. Cham: Springer, 2018.

Modeling Languages: An Introduction to Promela 28/66

Modeling Languages: An
Introduction to Promela

Modelling Languages

Modeling Languages: An Introduction to Promela 29/66

Core Idea

Promela

Modeling Languages: An Introduction to Promela 30/66

Spin: mature model checker (>30 years of development)

Promela = Protocol/cess meta language
C-inspired syntax

Promela

Modeling Languages: An Introduction to Promela 30/66

Spin: mature model checker (>30 years of development)
Promela = Protocol/cess meta language

C-inspired syntax

Promela

Modeling Languages: An Introduction to Promela 30/66

Spin: mature model checker (>30 years of development)
Promela = Protocol/cess meta language
C-inspired syntax

Hello Promela

Modeling Languages: An Introduction to Promela 31/66

init{
int num = 11 * 23 * 8;
printf("Hello SPLV %d\n", num);

}

Hello Promela

Modeling Languages: An Introduction to Promela 31/66

init{
int num = 11 * 23 * 8;
printf("Hello SPLV %d\n", num);

}

Do Blocks

Modeling Languages: An Introduction to Promela 32/66

#define N 100

proctype counter(int i){
do // repeats indefinitely
:: (i < N) -> i = i + 1 // guarded increase
:: (i >= N) -> break // break do loop
od
end: skip // declare a (valid) end state

}

init{
run counter(0)

}

Promela: Traffic Lights

Modeling Languages: An Introduction to Promela 33/66

mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

active proctype TrafficLight(){
do
:: (walk == red && car == red) -> car = green
:: (walk == red && car == red) -> walk = green
:: (car == red && walk == green) -> walk = red
:: car == green -> car = yellow
:: car == yellow -> car = red
od

}

Promela: Traffic Lights

Modeling Languages: An Introduction to Promela 33/66

mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

active proctype TrafficLight(){
do
:: (walk == red && car == red) -> car = green
:: (walk == red && car == red) -> walk = green
:: (car == red && walk == green) -> walk = red
:: car == green -> car = yellow
:: car == yellow -> car = red
od

}

Composition

Modeling Languages: An Introduction to Promela 34/66

Recall:

Communication (Channels)

Modeling Languages: An Introduction to Promela 35/66

mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;

// Channel of size 0 = synchronous communication
chan press = [0] of {bool};

active proctype PedestrianButton(){
do
:: press!true // send `true`
:: press!false // send `false`
od

}

Communication (Channels) contd.

Modeling Languages: An Introduction to Promela 36/66

active proctype TrafficLight(){
bool button_pressed = false;
do
:: (walk == red && car == red) ->

press?button_pressed; //receive pressed
if
:: button_pressed -> walk = green
:: !button_pressed -> car = green
fi

:: (car == red && walk == green) -> walk = red
:: car == green -> car = yellow
:: car == yellow -> car = red
od

}

Program Graphs

Modeling Languages: An Introduction to Promela 37/66

Program Graphs (ctd.)

Modeling Languages: An Introduction to Promela 38/66

Core ideas:

States = Program locations (Loc) ˆ values of variables JΓK

Conditions over variables in context Γ: CondpΓq
(propositional logic)
conditional transition relation:

ãÑ Ď CondpΓq ˆ Actˆ Locˆ Loc

Transition relation from this:

l ãÑg ,α l 1 η |ù g
pl , ηq Ñα pl 1, pJαKqpηqq

Program Graphs (ctd.)

Modeling Languages: An Introduction to Promela 38/66

Core ideas:

States = Program locations (Loc) ˆ values of variables JΓK

Conditions over variables in context Γ: CondpΓq
(propositional logic)

conditional transition relation:

ãÑ Ď CondpΓq ˆ Actˆ Locˆ Loc

Transition relation from this:

l ãÑg ,α l 1 η |ù g
pl , ηq Ñα pl 1, pJαKqpηqq

Program Graphs (ctd.)

Modeling Languages: An Introduction to Promela 38/66

Core ideas:

States = Program locations (Loc) ˆ values of variables JΓK

Conditions over variables in context Γ: CondpΓq
(propositional logic)
conditional transition relation:

ãÑ Ď CondpΓq ˆ Actˆ Locˆ Loc

Transition relation from this:

l ãÑg ,α l 1 η |ù g
pl , ηq Ñα pl 1, pJαKqpηqq

Program Graphs (ctd.)

Modeling Languages: An Introduction to Promela 38/66

Core ideas:

States = Program locations (Loc) ˆ values of variables JΓK

Conditions over variables in context Γ: CondpΓq
(propositional logic)
conditional transition relation:

ãÑ Ď CondpΓq ˆ Actˆ Locˆ Loc

Transition relation from this:

l ãÑg ,α l 1 η |ù g
pl , ηq Ñα pl 1, pJαKqpηqq

Example: MP Concurrency

Modeling Languages: An Introduction to Promela 39/66

bool flag[2]; //flag for entering critical section
byte num_crit; //how many processes in critical section

active [2] proctype user() // two processes
{
do
::

flag[_pid] = 1;
flag[1 - _pid] == 0 ->

num_crit = num_crit + 1; // enter
num_crit = num_crit - 1; // exit

flag[_pid] = 0;
od
}

Example: Buffers

Modeling Languages: An Introduction to Promela 40/66

Example: Buffers in Promela

Modeling Languages: An Introduction to Promela 41/66

mtype = {request, response, nil}

proctype Router(chan buffer_from, buffer_to){
mtype msg = nil;
do /* a router just keeps forwarding messages */
:: buffer_from?msg -> buffer_to!msg
od

}

Example: Buffers in Promela (ctd.)

Modeling Languages: An Introduction to Promela 42/66

proctype EndPoint(chan buffer_from, buffer_to){
mtype msg = nil;
do
:: atomic{ (msg == nil) && buffer_from?[msg]
-> buffer_from?msg}
:: atomic{ (msg == request)
-> buffer_to!response; msg = nil }
:: atomic{ (msg == response) -> msg = nil }
:: buffer_to!request
od

}

Semantics of channels

Modeling Languages: An Introduction to Promela 43/66

Core idea:

Extend actions Act with set of communication actions
Comm
Comm: Actions c!v and c?x to send value v on channel c
and receive into variable x .
Multiple program graphs: composition (∥) with matching
actions built from c?v/c!v pairs.

Semantics of channels

Modeling Languages: An Introduction to Promela 43/66

Core idea:

Extend actions Act with set of communication actions
Comm

Comm: Actions c!v and c?x to send value v on channel c
and receive into variable x .
Multiple program graphs: composition (∥) with matching
actions built from c?v/c!v pairs.

Semantics of channels

Modeling Languages: An Introduction to Promela 43/66

Core idea:

Extend actions Act with set of communication actions
Comm
Comm: Actions c!v and c?x to send value v on channel c
and receive into variable x .

Multiple program graphs: composition (∥) with matching
actions built from c?v/c!v pairs.

Semantics of channels

Modeling Languages: An Introduction to Promela 43/66

Core idea:

Extend actions Act with set of communication actions
Comm
Comm: Actions c!v and c?x to send value v on channel c
and receive into variable x .
Multiple program graphs: composition (∥) with matching
actions built from c?v/c!v pairs.

Modelling Properties 44/66

Modelling Properties

Models

Modelling Properties 45/66

What is a model?

Models

Modelling Properties 45/66

What is a model?

Model Theory 101

Modelling Properties 46/66

Structures, e.g. groups, rings, fields, labeled transition
systems

Formulas in a given logic, e.g. a “ b, Dc , a ˚ c “ 1, lp␣pq
Models A |ù ϕ, i.e. the formula ϕ holds in the structure A

Model Theory 101

Modelling Properties 46/66

Structures, e.g. groups, rings, fields, labeled transition
systems
Formulas in a given logic, e.g. a “ b, Dc , a ˚ c “ 1, lp␣pq

Models A |ù ϕ, i.e. the formula ϕ holds in the structure A

Model Theory 101

Modelling Properties 46/66

Structures, e.g. groups, rings, fields, labeled transition
systems
Formulas in a given logic, e.g. a “ b, Dc , a ˚ c “ 1, lp␣pq
Models A |ù ϕ, i.e. the formula ϕ holds in the structure A

(Modal) Logic

Modelling Properties 47/66

Propositional logic pP, Q, . . . ,_,^,␣q

First-order logic pP, Q, . . . ,_,^,␣, D, @q

Modal logic p. . . , l,♢q

l « necessity

♢ « possibility

(Modal) Logic

Modelling Properties 47/66

Propositional logic pP, Q, . . . ,_,^,␣q

First-order logic pP, Q, . . . ,_,^,␣, D, @q

Modal logic p. . . , l,♢q

l « necessity

♢ « possibility

(Modal) Logic

Modelling Properties 47/66

Propositional logic pP, Q, . . . ,_,^,␣q

First-order logic pP, Q, . . . ,_,^,␣, D, @q

Modal logic p. . . , l,♢q

l « necessity

♢ « possibility

Linear-Time Properties

Modelling Properties 48/66

Definition (LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A linear
property of TS is a set of traces, i.e. sequences P Ď APN over
atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (Satisfying an LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system and let P be
a linear time property. We say that TS satisfies P, in symbols,
TS |ù P, iff TracespTSq Ď P.

Linear-Time Properties

Modelling Properties 48/66

Definition (LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A linear
property of TS is a set of traces, i.e. sequences P Ď APN over
atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (Satisfying an LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system and let P be
a linear time property. We say that TS satisfies P, in symbols,
TS |ù P, iff TracespTSq Ď P.

Linear-Time Properties

Modelling Properties 48/66

Definition (LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system. A linear
property of TS is a set of traces, i.e. sequences P Ď APN over
atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (Satisfying an LT Property)
Let TS “ pS, Act,Ñ, S0, AP, Lq be a transition system and let P be
a linear time property. We say that TS satisfies P, in symbols,
TS |ù P, iff TracespTSq Ď P.

Linear Temporal Logic (intro)

Modelling Properties 49/66

Propositional logic + modal operators
pP, Q, . . . ,_,^,␣, ⃝,Y, l,♢q

l fi “Always”

♢ fi “Eventually”

⃝ fi “Next”

Y fi “Until”

Note: propositional logic (and LTL) has no quantifiers @, D
(!)

Linear Temporal Logic (intro)

Modelling Properties 49/66

Propositional logic + modal operators
pP, Q, . . . ,_,^,␣, ⃝,Y, l,♢q

l fi “Always”

♢ fi “Eventually”

⃝ fi “Next”

Y fi “Until”

Note: propositional logic (and LTL) has no quantifiers @, D
(!)

Linear Temporal Logic (intro)

Modelling Properties 49/66

Propositional logic + modal operators
pP, Q, . . . ,_,^,␣, ⃝,Y, l,♢q

l fi “Always”

♢ fi “Eventually”

⃝ fi “Next”

Y fi “Until”

Note: propositional logic (and LTL) has no quantifiers @, D
(!)

Intuition of LTL Operators

Modelling Properties 50/66

p P AP
⃝ fi “Next”
l fi “Always”
♢ fi “Eventually”
Y fi “Until”

Intuition of LTL Operators

Modelling Properties 50/66

p P AP
⃝ fi “Next”
l fi “Always”
♢ fi “Eventually”
Y fi “Until”

Intuition of LTL Operators

Modelling Properties 50/66

p P AP
⃝ fi “Next”
l fi “Always”
♢ fi “Eventually”
Y fi “Until”

Intuition of LTL Operators

Modelling Properties 50/66

p P AP
⃝ fi “Next”
l fi “Always”
♢ fi “Eventually”
Y fi “Until”

Intuition of LTL Operators

Modelling Properties 50/66

p P AP
⃝ fi “Next”
l fi “Always”
♢ fi “Eventually”
Y fi “Until”

Example: Safety

Modelling Properties 51/66

“Cars and Pederstrians can never go at the same time ”

fi

l␣pcars can go^ pedestrians can goq

Example: Safety

Modelling Properties 51/66

“Cars and Pederstrians can never go at the same time ” fi

l␣pcars can go^ pedestrians can goq

LTL, Formally (Syntax)

Modelling Properties 52/66

Definition (Syntax of LTL)
Let AP be a set (of atomic propositions). Then, an LTL formula
over AP is a word in the language defined by the grammar:

φ ::“ true | a | φ1 ^ φ2 | ␣φ | ⃝φ | φ1 Y φ2

We call the set of such formulae LTLAP. When AP is clear from
context, we also say φ is an LTL formula (and omit AP).

LTL, Formally (Semantics, I)

Modelling Properties 53/66

Definition (The “Models” Relation)
We define |ù as the minimial relation over traces and LTL formulae
|ù Ď pNÑ PowpAPqq ˆ LTLAP, such that:

A |ù true
A |ù a P AP iff a P A0

A |ù φ1 ^ φ2 iff A |ù φ1 and A |ù φ2

A |ù ␣φ iff A |ù φ

A |ù ⃝ φ iff Ar1 . . .s “ A1A2 . . . |ù φ

A |ù φ1 Y φ2 iff Dj , Arj . . .s |ù φ2 and @i ă j , σri . . .s |ù φ1

LTL, Formally (Semantics, II)

Modelling Properties 54/66

Definition (Semantics of LTL)
Let φ be an LTL formula over AP. We define
Wordspφq :“ tπ P Pow pAPqN | π |ù φu.

Definition
We say the transition system TS satisfies φ (in symbols, TS |ù φ),
if TracespTSq Ď Wordspφq.

LTL, Formally (Semantics, II)

Modelling Properties 54/66

Definition (Semantics of LTL)
Let φ be an LTL formula over AP. We define
Wordspφq :“ tπ P Pow pAPqN | π |ù φu.

Definition
We say the transition system TS satisfies φ (in symbols, TS |ù φ),
if TracespTSq Ď Wordspφq.

Temporal Modalities

Modelling Properties 55/66

Definition (♢ Operator)
For an LTL formula φ, we define the operator ♢ as

♢φ :“ trueY φ

Definition (l Operator)
For an LTL formula φ, we define the operator l as

lφ :“ ␣♢␣φ

Temporal Modalities

Modelling Properties 55/66

Definition (♢ Operator)
For an LTL formula φ, we define the operator ♢ as

♢φ :“ trueY φ

Definition (l Operator)
For an LTL formula φ, we define the operator l as

lφ :“ ␣♢␣φ

Deadlocks

Modelling Properties 56/66

Recall:

Temporal logic?

Recall: we assumed no finite states

transformation is a deadlock check
no deadlock fi l␣capture-state

Deadlocks

Modelling Properties 56/66

Recall:

Temporal logic?

Recall: we assumed no finite states

transformation is a deadlock check
no deadlock fi l␣capture-state

Deadlocks

Modelling Properties 56/66

Recall:

Temporal logic?

Recall: we assumed no finite states

transformation is a deadlock check
no deadlock fi l␣capture-state

Deadlocks

Modelling Properties 56/66

Recall:

Temporal logic?

Recall: we assumed no finite states

transformation is a deadlock check

no deadlock fi l␣capture-state

Deadlocks

Modelling Properties 56/66

Recall:

Temporal logic?

Recall: we assumed no finite states

transformation is a deadlock check
no deadlock fi l␣capture-state

Invariants

Modelling Properties 57/66

Invariant (property does not change) fi lP

Examples:

mutual exclusion: never two process in critical section
lpcrit ă 2q
cars and pedestrians don’t go at the same time
lp␣cars can go_␣pederstrians can goq

Safety

Modelling Properties 58/66

Other safety properties: bad prefix

Yellow should warn of red coming:
lp␣pyellow_ redq Ñ ⃝␣redq

Definition
An LT property P over AP is called a safety property, if for all
traces π P Pow pAPqN there exists a finite prefix π̂ Ă π such that
extensions of that prefix are disjoint from P, i.e.
tπ1 P Pow pAPqN | π̂ Ă π1u X P “ H

Fairness

Modelling Properties 59/66

“Everybody gets their turn”

Unconditional l♢P (“Everybody gets their turn infinitely
often”)
Strong l♢P Ñ l♢Q (“Everybody who asks infinitely
often, goes infinitely often”)
Weak ♢lP Ñ l♢Q(“Everybody who is waiting from
some point on, gets their turn infinitely often”)
Fairness fi Unconditional ^ Strong ^ Weak

(Nondeterminism): Condition or constraint?

Fairness

Modelling Properties 59/66

“Everybody gets their turn”

Unconditional l♢P (“Everybody gets their turn infinitely
often”)
Strong l♢P Ñ l♢Q (“Everybody who asks infinitely
often, goes infinitely often”)
Weak ♢lP Ñ l♢Q(“Everybody who is waiting from
some point on, gets their turn infinitely often”)
Fairness fi Unconditional ^ Strong ^ Weak

(Nondeterminism): Condition or constraint?

Liveness Properties

Modelling Properties 60/66

More generally, liveness are things of the type “good thing happen
infinitely often”

Traffic light’s let people through: l♢green
Mutex lets processes do their work: lpp♢crit1q ^ p♢crit2qq

Definition (Liveness — Alpern and Schneider)
An LT property P over AP is called a liveness property, if every
finite word can be extended to a trace in the property P, i.e. for all
π̂ P Pow pAPq˚ there exsits a π P P such that π̂ Ă π.

Decomposition

Modelling Properties 61/66

Safety properties: constrain finite behavior
Liveness properties: constrain infinite behavior

Theorem
Let P be a linear time property P over AP, i.e. P Ď Pow pAPqN.
Then there exist a liveness property Plive and a safety property Psafe
over AP, such that P “ Plive X Psafe.

Decomposition Theorem

Modelling Properties 62/66

Proof.
(Sketch) The metric

d : Pow pAPqN ˆ Pow pAPqN Ñ Rě0,

pπ, σq ÞÑ

"

0, if σ “ π
1

|gcppσ,πq|
, otherwise ,

where gcppσ, πq denotes the greatest common prefix of σ and π,
makes Pow pAPqN a metric space. Safety properties are the closed
sets of the induced topology. We have

P “ P̄
loomoon

:“Psafe

XP Y pPow pAPqNqzP̄q
loooooooooooomoooooooooooon

:“Plive

Model Checking with Spin

Modelling Properties 63/66

Deadlocks: nothing additional! (end label)

LTL Formulae: never claims

Model Checking with Spin

Modelling Properties 63/66

Deadlocks: nothing additional! (end label)
LTL Formulae: never claims

Example: Safety in Traffic Light

Modelling Properties 64/66

Example: Deadlock in Request-
Response

Modelling Properties 65/66

A Word on Complexity

Modelling Properties 66/66

Invariant checking (BFS) is linear in state space, formula,
transitions (still large spaces!).
General LTL model checking is PSPACE hard

Mitigations:
Partial order reduction

Symmetry reduction

Abstraction (gradual refinements)

Symbolic model checking

. . .

A Word on Complexity

Modelling Properties 66/66

Invariant checking (BFS) is linear in state space, formula,
transitions (still large spaces!).
General LTL model checking is PSPACE hard
Mitigations:

Partial order reduction

Symmetry reduction

Abstraction (gradual refinements)

Symbolic model checking

. . .

	Motivation
	Modelling Protocols
	Modeling Languages: An Introduction to Promela
	Modelling Properties

