Protocol Verification

A Brief Introduction to Model Checking and Temporal Logic

Andrés Goens (U. of Amsterdam) SPLV 2024 @ Strathclyde

[Motivation](#page-1-0)

Protocol Verification?

Protocols

ix
Xi

Examples of protocols

Distributed systems (e.g. paxos) ÷.

[Motivation](#page-1-0) 4/66

Protocols

Examples of protocols

Distributed systems (e.g. paxos) Þ.

þ. Hardware (e.g. cache coherence)

- Distributed systems (e.g. paxos) Þ.
- þ. Hardware (e.g. cache coherence)
- **F** Cryptographic protocols (e.g. TLS)

Verification

VXX

Examples of properties

Verification

Examples of properties

Verification

Examples of properties

What this course is about

What this course is about

This is what we'll cover

What you *will* (hopefully) know by the end

- **Labeled transition systems** (LTS)
- **Modeling languages** (promela)
- **•** (Propositional) Linear Temporal Logic (LTL)
- Þ. Examples!

What you *will* (hopefully) know by the end

- **Labeled transition systems** (LTS)
- Modeling languages (promela)
- **•** (Propositional) Linear Temporal Logic (LTL)
- Þ. Examples!

What you will *not* (necessarily) know by the end

- Other logics (e.g. CTL*, *µ* calculus)
- \blacksquare How model checking works internally (decision procedures)

[Modelling Protocols](#page-13-0)

[Modelling Protocols](#page-13-0) 8/66

Definition (Labeled Transition Systems)

A labeled transition system is a tuple of the form $(S, Act, \rightarrow, S_0, AP, L)$, where S is a set of states, $S_0 \subseteq S$ a subset of initial states, Act is a set (of actions), $\rightarrow \subseteq$ Act $\times S \times S$ is a (transition) relation, AP is a set (of atomic propositions) and $L : S \rightarrow Pow(AP)$ is a (labeling) function.

Example: Traffic Light

Example: Traffic Light

green

Example: Traffic Light

$$
\bullet \quad S = \{ \text{red}, \text{green}, \text{yellow} \}, \ S_0 = \text{red}
$$

\n- $$
Act = \{ * \}
$$
\n- $\rightarrow = \{ (*, \text{red}, \text{green}), (*, \text{green}, \text{yellow}), (*, \text{yellow}, \text{red}) \}$
\n- $AP = L = \emptyset$
\n

Two Traffic Lights

[Modelling Protocols](#page-13-0) **11/66**

Two Traffic Lights

- Act $= \{ \epsilon, \text{button pressed}, \text{no button pressed} \}$
- $\textsf{AP} = \{\textsf{Pedestrians can go}, \textsf{Cars can go}\}$
- $L = \text{cars: red, walk: green} \mapsto \{\text{Pedestrians can go}\}, \dots$

Interleaving

Two traffic lights \leftrightarrow One LTS

Interleaving

Two traffic lights \leftrightarrow One LTS

Definition (Interleaving)

Let $TS_i = (S_i, \text{Act}_i, \rightarrow_i, S_{0,i}, \text{AP}_i, L_i), i = 1, 2$ be two transition systems. We define the transition system $TS_1 \parallel TS_2 :=$ $p(S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, S_{0,1} \times S_{0,2}, \text{AP}_1 \cup \text{AP}_2, L_1 \times L_2)$, where $L_1 \times L_2$: $S_1 \times S_2 \rightarrow \text{Pow}(AP_1 \cup AP_2)$ is defined as $(L_1 \times L_2)(s_1, s_2) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by

$$
\frac{s_1 \to_1^\alpha s_1'}{(s_1, s_2) \to^\alpha (s_1', s_2)} \qquad \frac{s_2 \to_2^\alpha s_2'}{(s_1, s_2) \to^\alpha (s_1, s_2')}.
$$

We call this construction the *interleaving* of TS_1 and TS_2 .

Interleaving

Two traffic lights \leftrightarrow One LTS

Definition (Interleaving)

Let $TS_i = (S_i, \text{Act}_i, \rightarrow_i, S_{0,i}, \text{AP}_i, L_i), i = 1, 2$ be two transition systems. We define the transition system $TS_1 \parallel TS_2 :=$ $p(S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, S_{0,1} \times S_{0,2}, \text{AP}_1 \cup \text{AP}_2, L_1 \times L_2)$, where $L_1 \times L_2$: $S_1 \times S_2 \rightarrow \text{Pow}(AP_1 \cup AP_2)$ is defined as $(L_1 \times L_2)(s_1, s_2) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by

$$
\frac{s_1 \to_1^\alpha s_1'}{(s_1, s_2) \to^\alpha (s_1', s_2)} \qquad \frac{s_2 \to_2^\alpha s_2'}{(s_1, s_2) \to^\alpha (s_1, s_2')}.
$$

We call this construction the *interleaving* of TS_1 and TS_2 .

Note that this means the two TS are *independent*

Example: Intearleaving

Example: Intearleaving

VXX

Definition (Handshake)

Let $TS_i = (S_i, \text{Act}_i, \rightarrow_i, S_{0,i}, \text{AP}_i, L_i), i = 1, 2$ be two transition systems and $H \subseteq Act_1 \cap Act_2$. We define the transition system $TS_1 \parallel_H TS_2 := (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow$ $, S_{0,1} \times S_{0,2}$, AP₁ \cup AP₂, $L_1 \times L_2$), where \rightarrow is defined by:

$$
\frac{s_1 \rightarrow_1^{\alpha} s_1' \quad \alpha \notin H}{(s_1, s_2) \rightarrow^{\alpha} (s_1', s_2)} \quad \frac{s_2 \rightarrow_1^{\alpha} s_2' \quad \alpha \notin H}{(s_1, s_2) \rightarrow^{\alpha} (s_1, s_2')}
$$

$$
\frac{s_1 \rightarrow_1^{\alpha} s_1' \quad s_2 \rightarrow_2^{\alpha} s_2' \quad \alpha \in H}{(s_1, s_2) \rightarrow^{\alpha} (s_1', s_2')}
$$

We call this the parallel composition with handshake H. When $H = Act_1 \cap Act_2$, we omit H.

Two Traffic Lights, revisited

Two Traffic Lights, revisited

Concurrency: Message Passing

Concurrency: Message Passing

Concurrency: Message Passing

Assumption: atomicity of read-modify-writes here. Reasonable?

MSI Cache Coherency Protocol

MSI Cache Coherency Protocol

Source: Nagarajan, Vijay, et al. A primer on memory consistency and cache coherence. Springer Nature, 2020.

State Graph

\blacktriangleright TS \neq Graphs

[Modelling Protocols](#page-13-0) 18/66

State Graph

F $TS \neq$ Graphs

• Visualization (graphs): very useful!

State Graph

- **TS** \neq Graphs
- **•** Visualization (graphs): very useful!

Definition (Predecessors/Successors)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. For $s \in S$, $\alpha \in$ Act, we define $Post(s, \alpha) := \{ s' \in S \mid s \rightarrow^{\alpha} s' \}, Post(\mathbf{s}) :=$ \mathbb{R}^2 $_{\alpha \in \mathsf{Act}}$ Post $(\bm{\mathsf{s}}, \alpha)$ as the successors of s, and similarly Pre for the predecessors.
State Graph

- **TS** \neq Graphs
- **•** Visualization (graphs): very useful!

Definition (Predecessors/Successors)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. For $s \in S$, $\alpha \in$ Act, we define $Post(s, \alpha) := \{ s' \in S \mid s \rightarrow^{\alpha} s' \}, Posttext{Post}(s) :=$ \mathbb{R}^2 $_{\alpha \in \mathsf{Act}}$ Post $(\bm{\mathsf{s}}, \alpha)$ as the successors of s, and similarly Pre for the predecessors.

Definition (State Graph)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. We call the directed graph $G(TS) = (S, E)$ the state graph of TS, where $E = \{s, s' \in S \times S \mid s \in S, s' \in Post(s)\}$

Definition (Path fragments)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. A sequence $\pi = \pi_0 \pi_1 \pi_2 \ldots \in (S)_{\mathbb{N}}$ is called a *path fragment* if $\pi_{i+1} \in \text{Post}(\pi_i)$ $\forall i \in \mathbb{N}$. It is called *finite* if it is a finite sequence $(\pi_i)_{i=0}^N$ instead.

For a path fragment π , we denote the *i*-th element by $\pi[i]$ and similarly the sub-sequence $(\pi_k)_{\ell}^j$ $\int_{k=i}^{j}$ by $\pi[i..j]$

Definition (Path fragments)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. A sequence $\pi = \pi_0 \pi_1 \pi_2 \ldots \in (S)_{\mathbb{N}}$ is called a *path fragment* if $\pi_{i+1} \in \text{Post}(\pi_i)$ $\forall i \in \mathbb{N}$. It is called *finite* if it is a finite sequence $(\pi_i)_{i=0}^N$ instead.

For a path fragment π , we denote the *i*-th element by $\pi[i]$ and similarly the sub-sequence $(\pi_k)_{\ell}^j$ $\int_{k=i}^{j}$ by $\pi[i..j]$

Sequences of transitions $=$ path framgents through the state graph

Paths

Definition (Initial path fragment)

A path fragment π is called *initial*, if it starts at an initial statei, i.e. $\pi_0 \in S_0$.

Paths

Definition (Initial path fragment)

A path fragment π is called *initial*, if it starts at an initial statei, i.e. $\pi_0 \in S_0$.

Definition (Maximal path fragment)

A path fragment *π* is called a maximal, if it is not a proper prefix $\pi \subsetneq \pi'$ of another path fragment π' , i.e. it cannot be extended.

Paths

Definition (Initial path fragment)

A path fragment π is called *initial*, if it starts at an initial statei, i.e. $\pi_0 \in S_0$.

Definition (Maximal path fragment)

A path fragment π is called a maximal, if it is not a proper prefix $\pi \subsetneq \pi'$ of another path fragment π' , i.e. it cannot be extended.

Definition (Path)

A path fragment π is called a *path* if it is initial and maximal.

Example: Paths in Traffic Light

A Typical Traffic Light in the UK?

<u>kyl</u>

Example: Paths in Traffic Light

A Typical Traffic Light in the UK?

Non-example

VXI

finite path fragments can be extended to infinite ones, but...

finite path fragments can be extended to infinite ones, but...

finite path fragments can be extended to infinite ones, but...

$$
\mathsf{Post}(s) = \varnothing
$$

End States

Modeling end states with infinite paths

End States

Modeling end states with infinite paths

Assumption

For the rest of this course we assume no end states s with Post(s) = \emptyset .

Paths \triangleq **sequences of states** \in **S**

[Modelling Protocols](#page-13-0) 24/66

- **P** Paths \triangleq sequences of states \in S
- **P** Properties defined over AP, not S

Definition (Traces)

Let *π* be a path fragment. We define the trace of *π* as the sequence $L(\pi) \in (\mathbb{N} \to \text{Pow}(AP))$ as the sequence given by $(L(\pi))_i = L(\pi_i) \forall i \in \mathbb{N}$, and similarly for a finite path fragment. For $s \in S$ we define Traces(s) as the set of traces for path fragments $s \in S$ we define Traces(s) as the set of traces for
starting at s, and Traces(*TS*) = $\bigcup_{s \in S_0}$ Traces(s).

Corresponds to

Corresponds to

{ cars can go } \Rightarrow { cars can go } \Rightarrow { } \Rightarrow { cars can go } \rightarrow { cars can go } \rightarrow { } \rightarrow ...

VXX

Many notions of equivalence.

- **Many notions of equivalence.**
- Þ. Today: one

Definition (Trace Equivalence)

Let TS_i , $i = 1, 2$ be two tranisition systems with $AP_1 = AP_2$. We say TS_1 and TS_2 are trace equivalent if $Traces(TS_1) = Traces(TS_2)$.

References

Main references for this course:

- **Baier, Christel, and Joost-Pieter Katoen. Principles of** model checking. MIT press, 2008.
- **F** Clarke, Edmund M., et al., eds. Handbook of model checking. Vol. 10. Cham: Springer, 2018.

[Modeling Languages: An](#page-56-0) [Introduction to Promela](#page-56-0)

[Modeling Languages: An Introduction to Promela](#page-56-0) 28/66

Modelling Languages

Core Idea

.
الخا

\blacktriangleright Spin: mature model checker ($>$ 30 years of development)

- \blacktriangleright Spin: mature model checker ($>$ 30 years of development)
- Promela = **Pro**tocol/cess **me**ta **la**nguage

- \blacktriangleright Spin: mature model checker ($>$ 30 years of development)
- Promela = **Pro**tocol/cess **me**ta **la**nguage
- **C**-inspired syntax

init{ **int** num = 11 * 23 * 8; printf("Hello SPLV %d**\n**", num); }

init{ **int** num = 11 * 23 * 8; printf("Hello SPLV %d**\n**", num); }splv24 git: (master) x spin promela-examples/hello.pml

Hello SPLV 2024

process created

Do Blocks

#define N 100

```
proctype counter(int i){
    do // repeats indefinitely
    :: (i < N) -> i = i + 1 // guarded increase
    :: (i >= N) -> break // break do loop
    od
    end: skip // declare a (valid) end state
}
```

```
init{
    run counter(0)
}
```
Promela: Traffic Lights

```
mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;
```

```
active proctype TrafficLight(){
    do
    :: (walk == red \&& car == red) -> car = green
    :: (walk == red \&& car == red) -> walk = green
    :: (car == red && walk == green) \rightarrow walk = red
    :: car == green \rightarrow car = yellow
    :: car == yellow \rightarrow car = redod
```


Promela: Traffic Lights

```
mtype = {red, green, yellow}
mtype car = red;
mtype walk = red;
```


```
active proctype TrafficLight(){
```
do

:: (walk == red $\&$ car == red) -> car = green :: (walk == red $\&&$ car == red) -> walk = green :: (car == red && walk == green) \rightarrow walk = red :: car == green \rightarrow car = yellow :: $car ==$ yellow $\rightarrow car = red$ od

Composition

Communication (Channels)

```
mtype = {red, green, yellow}
mtype car = red;mtype walk = red;
```

```
// Channel of size 0 = synchronous communication
chan press = [0] of \{bool\};
```

```
active proctype PedestrianButton(){
    do
    :: press!true // send `true`
    :: press!false // send `false`
    od
```

```
}
```
Communication (Channels) contd.

```
active proctype TrafficLight(){
    bool button_pressed = false;
    do
    :: (walk == red && car == red) \rightarrowpress?button_pressed; //receive pressed
        if
        \therefore button pressed \rightarrow walk = green
        :: !button pressed \rightarrow car = green
        fi
    :: (car == red \&& walk == green) -> walk = red:: car == green -> car = yellow\therefore car == yellow \Rightarrow car = red
    od
```


Program Graphs (ctd.)

Core ideas:

States = Program locations (Loc) \times values of variables $\llbracket \Gamma \rrbracket$

Program Graphs (ctd.)

Core ideas:

- States = Program locations (Loc) \times values of variables $\llbracket \Gamma \rrbracket$
- ÷. Conditions over variables in context Γ : Cond(Γ) (propositional logic)
Program Graphs (ctd.)

Core ideas:

- States = Program locations (Loc) \times values of variables $\llbracket \Gamma \rrbracket$
- ð. Conditions over variables in context Γ : Cond(Γ) (propositional logic)
- **F** conditional transition relation:

 $\hookrightarrow \subseteq$ Cond(Γ) \times Act \times Loc \times Loc

Program Graphs (ctd.)

Core ideas:

- States = Program locations (Loc) \times values of variables $\llbracket \Gamma \rrbracket$
- ð. Conditions over variables in context Γ : Cond(Γ) (propositional logic)
- **F** conditional transition relation:

$$
\hookrightarrow \ \subseteq \mathsf{Cond}(\Gamma) \times \mathsf{Act} \times \mathsf{Loc} \times \mathsf{Loc}
$$

 \blacktriangleright Transition relation from this:

$$
\frac{1}{(I,\eta) \to^{\alpha} (I',([\![\alpha]\!]))}
$$

Example: MP Concurrency

bool flag[2]; *//flag for entering critical section* byte num_crit; *//how many processes in critical section*

```
active [2] proctype user() // two processes
{
do
::
       flag[ pid] = 1;
       flag[1 - pid] == 0 ->
           num_crit = num_crit + 1; // enter
           num_crit = num_crit - 1; // exit
       flag[pid] = 0;
od
}
```
Example: Buffers


```
mtype = {request, response, nil}
```

```
proctype Router(chan buffer_from, buffer_to){
   mtype msg = nil;do /* a router just keeps forwarding messages */
    :: buffer from?msg -> buffer to!msg
   od
}
```
Example: Buffers in Promela (ctd.) ୍ଧି

```
proctype EndPoint (chan buffer from, buffer to){
    mtype msg = nil;do
    :: atomic{ (msg == nil) && buffer from?[msg]
    -> buffer from?msg}
    :: atomic{ (msg == request)
    -> buffer_to!response; msg = nil }
    :: atomic{ (msg == response) \rightarrow msg = nil }
    :: buffer to!request
    od
```
}

Semantics of channels

Core idea:

 $\overline{\mathsf{x}}$

Core idea:

Extend actions Act with set of communication actions Comm

Core idea:

- Extend actions Act with set of communication actions Comm
- **F** Comm: Actions $c!v$ and $c?x$ to send value v on channel c and receive into variable x.

Core idea:

- Extend actions Act with set of communication actions Comm
- **F** Comm: Actions cly and c^2x to send value v on channel c and receive into variable x.
- Þ. Multiple program graphs: composition (∥) with matching actions built from $c?v/c!v$ pairs.

[Modelling Properties](#page-82-0)

Models

What is a model?

Models

What is a model?

Structures, e.g. groups, rings, fields, labeled transition systems

- **Structures, e.g. groups, rings, fields, labeled transition** systems
- **F** Formulas in a given logic, e.g. $a = b$, $\exists c, a \cdot c = 1, \Box(\neg p)$

- **F** Structures, e.g. groups, rings, fields, *labeled transition* systems
- **F** Formulas in a given logic, e.g. $a = b$, $\exists c, a \cdot c = 1, \Box(\neg p)$
- Þ. Models $A \models \phi$, i.e. the formula ϕ holds in the structure A

P Propositional logic $(P, Q, \ldots, \vee, \wedge, \neg)$

- Þ. Propositional logic $(P, Q, \ldots, \vee, \wedge, \neg)$
- First-order logic $(P, Q, \ldots, \vee, \wedge, \neg, \exists, \forall)$ Þ.

- **P** Propositional logic $(P, Q, \ldots, \vee, \wedge, \neg)$
- Þ. First-order logic $(P, Q, \ldots, \vee, \wedge, \neg, \exists, \forall)$
- **•** Modal logic (\ldots, \Box, \Diamond)
	- $\blacktriangleright \Box \approx$ necessity
	- $\blacktriangleright \ \Diamond \approx$ possibility

Linear-Time Properties

Definition (LT Property)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. A linear property of TS is a set of traces, i.e. sequences $P \subseteq AP^{\mathbb{N}}$ over atocmic propositions AP.

Linear-Time Properties

Definition (LT Property)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. A linear property of TS is a set of traces, i.e. sequences $P \subseteq AP^{\mathbb{N}}$ over atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (LT Property)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system. A linear property of TS is a set of traces, i.e. sequences $P \subseteq AP^{\mathbb{N}}$ over atocmic propositions AP.

Idea: these are the admissible traces in TS

Definition (Satisfying an LT Property)

Let $TS = (S, Act, \rightarrow, S_0, AP, L)$ be a transition system and let P be a linear time property. We say that TS satisfies P , in symbols, $TS \models P$, iff Traces(TS) $\subseteq P$.

Linear Temporal Logic (intro)

Propositional logic + modal operators $(P, Q, \ldots, \vee, \wedge, \neg, \bigcap, \cup, \square, \Diamond)$

.
الخا

Linear Temporal Logic (intro)

- **P** Propositional logic $+$ modal operators $(P, Q, \ldots, \vee, \wedge, \neg, \bigcap, \cup, \square, \Diamond)$
	- $\blacktriangleright \Box \triangleq$ "Always"
	- $\triangleright \ \Diamond \triangleq$ "Eventually"
	- \vdash $\bigcap \triangleq$ "Next"
	- $\mathbf{y} \cup \triangleq$ "Until"

 $\breve{\mathbf{x}}$

Linear Temporal Logic (intro)

- **P** Propositional logic $+$ modal operators $(P, Q, \ldots, \vee, \wedge, \neg, \bigcap, \cup, \square, \Diamond)$
	- $\blacktriangleright \Box$ \triangleq "Always"
	- $\triangleright \ \Diamond \triangleq$ "Eventually"
	- \vdash $\bigcap \triangleq$ "Next"
	- $\mathbf{y} \cup \mathbf{y}$ "Until"
- \blacktriangleright Note: propositional logic (and LTL) has no quantifiers \forall , \exists (!)

p

- $p \in AP$
- \blacksquare \bigcap \cong "Next"
- \blacksquare \blacksquare \cong "Always"
- $\blacktriangleright \Diamond \triangleq$ "Eventually"
- \blacktriangleright \cup \triangleq "Until"

- $p \in AP$
- Þ. $\bigcap \triangleq$ "Next"
- \blacksquare \blacksquare \cong "Always"
- $\blacktriangleright \Diamond \triangleq$ "Eventually"
- \blacktriangleright \cup \triangleq "Until"

 $p \in AP$ Þ. $\bigcap \triangleq$ "Next" \blacksquare \blacksquare \cong "Always" $\blacktriangleright \Diamond \triangleq$ "Eventually" \blacktriangleright \cup \triangleq "Until"

 $p \in AP$ Þ. $\bigcap \triangleq$ "Next" Þ. \Box \triangleq "Always" $\blacktriangleright \Diamond \triangleq$ "Eventually" \blacktriangleright \cup \triangleq "Until"

 $p \in AP$ Þ. $\bigcap \triangleq$ "Next" Þ. \Box \triangleq "Always" → \diamond \triangle "Eventually" \blacktriangleright \cup \triangleq "Until"

Example: Safety

"Cars and Pederstrians can never go at the same time "

Example: Safety

"Cars and Pederstrians can never go at the same time " \triangleq \Box (cars can go \land pedestrians can go)

Definition (Syntax of LTL)

Let AP be a set (of atomic propositions). Then, an LTL formula over AP is a word in the language defined by the grammar:

$$
\varphi ::= \mathsf{true} \mid a \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2
$$

We call the set of such formulae LTL_{AP} . When AP is clear from context, we also say *φ* is an LTL formula (and omit AP).

LTL, Formally (Semantics, I)

Definition (The "Models" Relation)

We define \models as the minimial relation over traces and LTL formulae $\models \subseteq (\mathbb{N} \rightarrow \text{Pow}(AP)) \times \text{LTL}_{AP}$, such that:

 $A \models$ true $A \models a \in AP$ iff $a \in A_0$ $A \models \varphi_1 \wedge \varphi_2$ iff $A \models \varphi_1$ and $A \models \varphi_2$ $A \models \neg \varphi$ iff $A \not\models \varphi$ $A \models \bigcirc \varphi$ iff $A[1 \dots] = A_1 A_2 \dots \models \varphi$ $A \models \varphi_1 \cup \varphi_2$ iff $\exists j$, $A[j...] \models \varphi_2$ and $\forall i < j$, $\sigma[i...] \models \varphi_1$

LTL, Formally (Semantics, II)

Definition (Semantics of LTL)

Let *φ* be an LTL formula over AP. We define $\mathsf{Words}(\varphi) := \{ \pi \in \mathsf{Pow}\left(\mathsf{AP}\right)^\mathbb{N} \mid \pi \models \varphi \}.$

Definition (Semantics of LTL)

Let *φ* be an LTL formula over AP. We define $\mathsf{Words}(\varphi) := \{ \pi \in \mathsf{Pow}\left(\mathsf{AP}\right)^\mathbb{N} \mid \pi \models \varphi \}.$

Definition

We say the transition system TS satisfies φ (in symbols, $TS \models \varphi$), if Traces(TS) \subseteq Words(φ).
Temporal Modalities

Ķ

Definition (♦ Operator)

For an LTL formula φ , we define the operator \Diamond as

 $\Diamond \varphi := \mathsf{true} \cup \varphi$

Temporal Modalities

Definition (♦ Operator)

For an LTL formula φ , we define the operator \Diamond as

 $\Diamond \varphi := \mathsf{true} \cup \varphi$

Definition $(\Box$ Operator)

For an LTL formula φ , we define the operator \Box as

$$
\Box \varphi := \neg \Diamond \neg \varphi
$$

Temporal logic?

Temporal logic?

Recall: we assumed no finite states

Temporal logic?

Recall: we assumed no finite states

 \blacktriangleright transformation is a deadlock check

Temporal logic?

Recall: we assumed no finite states

- \blacktriangleright transformation is a deadlock check
- **•** no deadlock $\triangleq \Box$ capture-state

Invariant (property does not change) $\triangleq \Box P$

Examples:

- **P** mutual exclusion: never two process in critical section \Box (crit < 2)
- **F** cars and pedestrians don't go at the same time $\Box(\neg \text{cars can go} \lor \neg \text{pederstrians can go})$

Other safety properties: bad prefix

Yellow should warn of red coming: $\Box(\neg$ (yellow \lor red) \rightarrow $\bigcirc \neg$ red)

Definition

An LT property P over AP is called a safety property, if for all traces $\pi \in \text{Pow}(AP)^{\mathbb{N}}$ there exists a finite prefix $\hat{\pi} \subset \pi$ such that extensions of that prefix are disjoint from P, i.e. $\{\pi' \in \text{Pow } (AP)^{\mathbb{N}} \mid \hat{\pi} \subset \pi'\} \cap P = \varnothing$

"Everybody gets their turn"

- Þ. Unconditional \Box \diamond P ("Everybody gets their turn infinitely often")
- **E** Strong $\Box \Diamond P \rightarrow \Box \Diamond Q$ ("Everybody who asks infinitely often, goes infinitely often")
- → Weak $\Diamond \Box P \rightarrow \Box \Diamond Q$ ("Everybody who is waiting from some point on, gets their turn infinitely often")
- **Fairness** \triangleq Unconditional \wedge Strong \wedge Weak

"Everybody gets their turn"

- Þ. Unconditional \Box \diamond P ("Everybody gets their turn infinitely often")
- **→** Strong $\Box \Diamond P \rightarrow \Box \Diamond Q$ ("Everybody who asks infinitely often, goes infinitely often")
- → Weak $\Diamond \Box P \rightarrow \Box \Diamond Q$ ("Everybody who is waiting from some point on, gets their turn infinitely often")
- **Fairness** \triangleq Unconditional \wedge Strong \wedge Weak

(Nondeterminism): Condition or constraint?

More generally, liveness are things of the type "good thing happen infinitely often"

- **T** Traffic light's let people through: \Box oreen
- Þ. Mutex lets processes do their work: $\Box((\Diamond crit_1) \land (\Diamond crit_2))$

Definition (Liveness — Alpern and Schneider)

An LT property P over AP is called a *liveness property*, if every finite word can be extended to a trace in the property P , i.e. for all $\hat{\pi} \in \text{Pow}(\text{AP})^*$ there exsits a $\pi \in P$ such that $\hat{\pi} \sqsubset \pi$.

- **B** Safety properties: constrain finite behavior
- P. Liveness properties: constrain infinite behavior

Theorem

Let P be a linear time property P over AP, i.e. $P \subseteq \text{Pow}(AP)^{\mathbb{N}}$. Then there exist a liveness property P_{live} and a safety property P_{safe} over AP, such that $P = P_{live} \cap P_{safe}$.

Decomposition Theorem

Proof.

(Sketch) The metric

$$
d: \text{Pow}(AP)^{\mathbb{N}} \times \text{Pow}(AP)^{\mathbb{N}} \to \mathbb{R}_{\geqslant 0},
$$

$$
(\pi, \sigma) \mapsto \begin{cases} 0, & \text{if } \sigma = \pi \\ \frac{1}{|\text{gcp}(\sigma, \pi)|}, & \text{otherwise} \end{cases},
$$

where $gcp(\sigma, \pi)$ denotes the greatest common prefix of σ and π , makes Pow $(AP)^{\mathbb{N}}$ a metric space. Safety properties are the closed sets of the induced topology. We have

$$
P = \underbrace{\bar{P}}_{:= P_{\text{safe}}} \cap \underbrace{P \cup (Pow\,(AP)^{\mathbb{N}}) \backslash \bar{P}}_{:= P_{\text{live}})}
$$

Deadlocks: nothing additional! (end label)

Model Checking with Spin

P Deadlocks: nothing additional! (end label)

У. LTL Formulae: never claims

-f LTL Translate the LTL formula LTL into a never claim.

This option reads a formula in LTL syntax from the second argument and translates it into Promela syntax (a never claim, which is Promela's equivalent of a Bchi Automaton). The LTL operators are written: [] (always), <> (eventually), and U (strong until). There is no X (next) operator, to secure compatibility with the partial order reduction rules that are applied during the verification process. If the formula contains spaces, it should be quoted to form a single argument to the SPIN command.

This option has largely been replaced with the support for inline specification of ltl formula, in Spin version 6.0.

Example: Safety in Traffic Light

Example: Deadlock in Request-Response

A Word on Complexity

-
- **I** Invariant checking (BFS) is linear in state space, formula, transitions (still large spaces!).
- **B** General LTL model checking is PSPACE hard

A Word on Complexity

-
- **I** Invariant checking (BFS) is linear in state space, formula, transitions (still large spaces!).
- **F** General LTL model checking is PSPACE hard
- Þ. Mitigations:
	- 51 Partial order reduction
	- Symmetry reduction
	- Þ. Abstraction (gradual refinements)
	- **Symbolic model checking**
	- *. . .*