The p-calculus, type-theoretically

Sean Watters

University of Strathclyde

30,/08/2024

S. Watters (University of Strathclyde) The p-calculus, type-theoretically

The Propositional Modal p-calculus

Given a set of variable names P with p,x € P:
L, :=T|LllplwpleAry|loeVvy|Ue|Op | uxe|vx.e
Essentially, this is:
@ Propositional logic,

@ Plus the modal operators [and O,

@ Plus the least and greatest fixpoint operators ¢ and v.

S. Watters (University of Strathclyde) The p-calculus, type-theoretically 30/08/2024

2/6

Fixpoint Unfolding
For any fixpoint formula of the form ux.@, we have:
ux.@ = @[x / pux.¢p]

(And dually for v.)

eg:

vx.p A Ox
= p AU0(vx.p AXx)
p A AO(vx.p A Tx))

Surprising(?) fact: For any formula ¢, take the set of formulas closed
under direct subformulas of propositional and modal formulas, and
unfoldings of fixpoints. This set is always finite.

S. Watters (University of Strathclyde) The p-calculus, type-theoretically 30/08/2024

3/6

The Fischer-Ladner Closure

Definition (The Closure of ¢)

The least set of formulas which contains ¢ and is closed under taking
direct subformulas of propositional and modal subformulas, and unfolding

fixpoint subformulas.

The closure is highly important in the study of the p-calculus, but...

It is not invarient under a-equivalence!

For example, we have:

ux.(Ox A(vy.uz.(Oz AOy)))
= px.(Ox ADO(vy.ux.(Ox AOy)))

But their closures are different!

S. Watters (University of Strathclyde) The p-calculus, type-theoretically 30/08/2024 4/6

De Bruijn to the Rescue?

data WST (At : Set) (n: N) : Set where
tt ff : WST At n
at —at : At = WST At n
and or : (@ w: WST At n) — WST At n
box dia : (¢ : WST At n) — WST At n
mu nu : (¢ : WST At (suc n)) — WST At n
var : Fin n — WST At n

data Scope (At : Set) : N — Set where
[] : Scope At zero
~ Y A{n} ([: Scope At n) {¢ : WST At n}
— (I @ IsFP @) — Scope At (suc n)

S. Watters (University of Strathclyde) The p-calculus, type-theoretically 30/08/2024

5/6

Wel Sublimely-Scoped Formulas

mutual
data SST (At : Set) {n: N} (/" : Scope At n) : Set where
-- other constructors here...
var : (x : Fin n) — SST At I
mu : {y : WST At (suc n)}
— (@ : SST At (I -, mu y))
— YR Q
— SST At I
data _~_ {At: Set} {n: N} {I" : Scope At n}
: WST At n — SST At [— Set where
—-- other constructors here...
var : (x : Fin n) — (var x) = (var x)
mu : {¢ : WST At (suc n)}
— {@': SST At (I -, mu @)}
= (P o~
S mue=xmue p

S. Watters (University of Strathclyde) The p-calculus, type-theoretically 30/08/2024

6/6

