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Verbosity of Conventional Effect Types

map : ∀ a b . (a → b, List a) → List b

map : ∀ a b . (a IO−−→ b, List a) IO−−→ List b
map : ∀ a b . (a Exception−−−−−−−−−→ b, List a) Exception−−−−−−−−−→ List b
map : ∀ a b . (a IO, Exception−−−−−−−−−−−−→ b, List a) IO, Exception−−−−−−−−−−−−→ List b

We need effect variables to apply map to arbitrarily effectful functions.

map : ∀ a b e . (a e−→ b, List a) e−→ List b
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Effect Contexts

The core idea is to decouple effects from function arrows, and manage
effects as effect contexts.

Functions can use any effects from the context by default.

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter
and result functions can use any effects from the context.

No change is required for first-class higher-order functions.

map : ∀ a b . (a → b) → List a → List b
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Absolute Modalities

An absolute modality specifies an effect context.

For map, the [] indicates that it does not require any effects.
map : ∀ a b . []((a → b, List a) → List b)

For a generator, the [yield] indicates that it might use yield.
gen : [yield](List Int → 1)
gen xs = map (fun x → do yield x) xs; ()

With conventional effect types, we usually need an effect variable.

gen : ∀ e . List Int yield, e−−−−−−−−→ 1
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Relative Modalities

A relative modality specifies a local changes to an effect context.

Useful to give modular types to effect handlers.
asList : <yield>(1 → 1) → List Int
asList m = handle m () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

The <yield> extends the effect context with the yield effect, which is
handled by an effect handler in asList.

A function <yield>(1 → 1) can still use any effects from the context.

With conventional effect types, we usually need an effect variable.

asList : ∀ e . (1 yield, e−−−−−−−−→ 1) e−→ List Int
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Modular Effectful Programming

> asList <yield>(fun () → gen [3,1,4,1,5,9])
# [3,1,4,1,5,9] : List Int

state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)
gen' : [yield, get, put](List Int → 1)

> asList <yield>(fun () →
state <get,put>(fun () → gen' [3,1,4,1,5,9]) 0; ())

# [3,4,8,9,14,23] : List Int

5



Modular Effectful Programming

> asList <yield>(fun () → gen [3,1,4,1,5,9])
# [3,1,4,1,5,9] : List Int

state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)
gen' : [yield, get, put](List Int → 1)

> asList <yield>(fun () →
state <get,put>(fun () → gen' [3,1,4,1,5,9]) 0; ())

# [3,4,8,9,14,23] : List Int

5



More in the Paper

MET: A core calculus following simple multimodal type theory.
Encoding a fragment of conventional effect types into MET

METE: Extension with effect variables.
METEL: A surface language with sound and complete type inference.

https://arxiv.org/abs/2407.11816
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