
Modal Effect Types

Wenhao Tang
The University of Edinburgh

SPLV Lightning Talk, 30th July 2024

(Joint work with Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, Anton Lorenzen)

Verbosity of Conventional Effect Types

map : ∀ a b . (a → b, List a) → List b

map : ∀ a b . (a IO−−→ b, List a) IO−−→ List b
map : ∀ a b . (a Exception−−−−−−−−−→ b, List a) Exception−−−−−−−−−→ List b
map : ∀ a b . (a IO, Exception−−−−−−−−−−−−→ b, List a) IO, Exception−−−−−−−−−−−−→ List b

We need effect variables to apply map to arbitrarily effectful functions.

map : ∀ a b e . (a e−→ b, List a) e−→ List b

1

Verbosity of Conventional Effect Types

map : ∀ a b . (a → b, List a) → List b

map : ∀ a b . (a IO−−→ b, List a) IO−−→ List b
map : ∀ a b . (a Exception−−−−−−−−−→ b, List a) Exception−−−−−−−−−→ List b
map : ∀ a b . (a IO, Exception−−−−−−−−−−−−→ b, List a) IO, Exception−−−−−−−−−−−−→ List b

We need effect variables to apply map to arbitrarily effectful functions.

map : ∀ a b e . (a e−→ b, List a) e−→ List b

1

Verbosity of Conventional Effect Types

map : ∀ a b . (a → b, List a) → List b

map : ∀ a b . (a IO−−→ b, List a) IO−−→ List b
map : ∀ a b . (a Exception−−−−−−−−−→ b, List a) Exception−−−−−−−−−→ List b
map : ∀ a b . (a IO, Exception−−−−−−−−−−−−→ b, List a) IO, Exception−−−−−−−−−−−−→ List b

We need effect variables to apply map to arbitrarily effectful functions.

map : ∀ a b e . (a e−→ b, List a) e−→ List b

1

Effect Contexts

The core idea is to decouple effects from function arrows, and manage
effects as effect contexts.

Functions can use any effects from the context by default.

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter
and result functions can use any effects from the context.

No change is required for first-class higher-order functions.

map : ∀ a b . (a → b) → List a → List b

2

Effect Contexts

The core idea is to decouple effects from function arrows, and manage
effects as effect contexts.

Functions can use any effects from the context by default.

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter
and result functions can use any effects from the context.

No change is required for first-class higher-order functions.

map : ∀ a b . (a → b) → List a → List b

2

Effect Contexts

The core idea is to decouple effects from function arrows, and manage
effects as effect contexts.

Functions can use any effects from the context by default.

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter
and result functions can use any effects from the context.

No change is required for first-class higher-order functions.

map : ∀ a b . (a → b) → List a → List b

2

Effect Contexts

The core idea is to decouple effects from function arrows, and manage
effects as effect contexts.

Functions can use any effects from the context by default.

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter
and result functions can use any effects from the context.

No change is required for first-class higher-order functions.

map : ∀ a b . (a → b) → List a → List b

2

Absolute Modalities

An absolute modality specifies an effect context.

For map, the [] indicates that it does not require any effects.
map : ∀ a b . []((a → b, List a) → List b)

For a generator, the [yield] indicates that it might use yield.
gen : [yield](List Int → 1)
gen xs = map (fun x → do yield x) xs; ()

With conventional effect types, we usually need an effect variable.

gen : ∀ e . List Int yield, e−−−−−−−−→ 1

3

Absolute Modalities

An absolute modality specifies an effect context.

For map, the [] indicates that it does not require any effects.
map : ∀ a b . []((a → b, List a) → List b)

For a generator, the [yield] indicates that it might use yield.
gen : [yield](List Int → 1)
gen xs = map (fun x → do yield x) xs; ()

With conventional effect types, we usually need an effect variable.

gen : ∀ e . List Int yield, e−−−−−−−−→ 1

3

Absolute Modalities

An absolute modality specifies an effect context.

For map, the [] indicates that it does not require any effects.
map : ∀ a b . []((a → b, List a) → List b)

For a generator, the [yield] indicates that it might use yield.
gen : [yield](List Int → 1)
gen xs = map (fun x → do yield x) xs; ()

With conventional effect types, we usually need an effect variable.

gen : ∀ e . List Int yield, e−−−−−−−−→ 1

3

Absolute Modalities

An absolute modality specifies an effect context.

For map, the [] indicates that it does not require any effects.
map : ∀ a b . []((a → b, List a) → List b)

For a generator, the [yield] indicates that it might use yield.
gen : [yield](List Int → 1)
gen xs = map (fun x → do yield x) xs; ()

With conventional effect types, we usually need an effect variable.

gen : ∀ e . List Int yield, e−−−−−−−−→ 1

3

Relative Modalities

A relative modality specifies a local changes to an effect context.

Useful to give modular types to effect handlers.
asList : <yield>(1 → 1) → List Int
asList m = handle m () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

The <yield> extends the effect context with the yield effect, which is
handled by an effect handler in asList.

A function <yield>(1 → 1) can still use any effects from the context.

With conventional effect types, we usually need an effect variable.

asList : ∀ e . (1 yield, e−−−−−−−−→ 1) e−→ List Int

4

Relative Modalities

A relative modality specifies a local changes to an effect context.

Useful to give modular types to effect handlers.
asList : <yield>(1 → 1) → List Int
asList m = handle m () with
return () ⇒ nil
yield x r ⇒ cons x (r ())

The <yield> extends the effect context with the yield effect, which is
handled by an effect handler in asList.

A function <yield>(1 → 1) can still use any effects from the context.

With conventional effect types, we usually need an effect variable.

asList : ∀ e . (1 yield, e−−−−−−−−→ 1) e−→ List Int

4

Relative Modalities

A relative modality specifies a local changes to an effect context.

Useful to give modular types to effect handlers.
asList : <yield>(1 → 1) → List Int
asList m = handle m () with
return () ⇒ nil
yield x r ⇒ cons x (r ())

The <yield> extends the effect context with the yield effect, which is
handled by an effect handler in asList.

A function <yield>(1 → 1) can still use any effects from the context.

With conventional effect types, we usually need an effect variable.

asList : ∀ e . (1 yield, e−−−−−−−−→ 1) e−→ List Int

4

Relative Modalities

A relative modality specifies a local changes to an effect context.

Useful to give modular types to effect handlers.
asList : <yield>(1 → 1) → List Int
asList m = handle m () with
return () ⇒ nil
yield x r ⇒ cons x (r ())

The <yield> extends the effect context with the yield effect, which is
handled by an effect handler in asList.

A function <yield>(1 → 1) can still use any effects from the context.

With conventional effect types, we usually need an effect variable.

asList : ∀ e . (1 yield, e−−−−−−−−→ 1) e−→ List Int

4

Relative Modalities

A relative modality specifies a local changes to an effect context.

Useful to give modular types to effect handlers.
asList : <yield>(1 → 1) → List Int
asList m = handle m () with
return () ⇒ nil
yield x r ⇒ cons x (r ())

The <yield> extends the effect context with the yield effect, which is
handled by an effect handler in asList.

A function <yield>(1 → 1) can still use any effects from the context.

With conventional effect types, we usually need an effect variable.

asList : ∀ e . (1 yield, e−−−−−−−−→ 1) e−→ List Int

4

Modular Effectful Programming

> asList <yield>(fun () → gen [3,1,4,1,5,9])
[3,1,4,1,5,9] : List Int

state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)
gen' : [yield, get, put](List Int → 1)

> asList <yield>(fun () →
state <get,put>(fun () → gen' [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23] : List Int

5

Modular Effectful Programming

> asList <yield>(fun () → gen [3,1,4,1,5,9])
[3,1,4,1,5,9] : List Int

state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)
gen' : [yield, get, put](List Int → 1)

> asList <yield>(fun () →
state <get,put>(fun () → gen' [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23] : List Int

5

More in the Paper

MET: A core calculus following simple multimodal type theory.
Encoding a fragment of conventional effect types into MET

METE: Extension with effect variables.
METEL: A surface language with sound and complete type inference.

https://arxiv.org/abs/2407.11816
6

https://arxiv.org/abs/2407.11816

