
Proof Compilation
Christopher Lam

Joint work with Audrey Seo (UW), Talia Ringer (UIUC), 
and Dan Grossman (UW)



Motivation



Motivation

• gcc is 15 million lines of code!



Motivation

• gcc is 15 million lines of code!
• We have no reason to even believe this is correct!



Motivation

• gcc is 15 million lines of code!
• We have no reason to even believe this is correct!

• We have explicit reason to believe it isn’t correct!



Motivation

• gcc is 15 million lines of code!
• We have no reason to even believe this is correct!

• We have explicit reason to believe it isn’t correct!

• Full correctness is too powerful!



Proposed Workflow



Proposed Workflow

1. Prove a property P about a program c in your 
source language using Hoare logic



Proposed Workflow

1. Prove a property P about a program c in your 
source language using Hoare logic

2. Compile c



Proposed Workflow

1. Prove a property P about a program c in your 
source language using Hoare logic

2. Compile c
A. While c is being compiled, look at the transformations 

being applied to the program



Proposed Workflow

1. Prove a property P about a program c in your 
source language using Hoare logic

2. Compile c
A. While c is being compiled, look at the transformations 

being applied to the program
B. Transform the Hoare logic proof of property P along 

with c



Proposed Workflow

1. Prove a property P about a program c in your 
source language using Hoare logic

2. Compile c
A. While c is being compiled, look at the transformations 

being applied to the program
B. Transform the Hoare logic proof of property P along 

with c
3. Retrieve an analogous property P’ about the 

compiled program c’



Two problems!



Two problems!

• Translating Hoare proofs across levels of abstraction



Two problems!

• Translating Hoare proofs across levels of abstraction
• Mangling Hoare proofs with compiler optimizations



Two problems!

• Translating Hoare proofs across levels of abstraction
• Mangling Hoare proofs with compiler optimizations

We’ve done this one



A Quick Example



A Quick Example

{5<="10}x:="5{x<="10}z:="99{x<="10}



A Quick Example

{5<="10}x:="5{x<="10}z:="99{x<="10}

{5<="10}#"1:="5{#1<="10}#"2:="99{#1<="10}



A Quick Example

{5<="10}x:="5{x<="10}z:="99{x<="10}

{5<="10}#"1:="5{#1<="10}#"2:="#1+#2{#1<="10}



A Quick Example

{5<="10}x:="5{x<="10}z:="99{x<="10}

{5<="10}#"1:="5{#1<="10}#"2:="42042{#1<="10}



A Quick Example

{5<="10}x:="5{x<="10}z:="99{x<="10}

{5<="10}#"1:="5{#1<="10}#"2:="TOM{#1<="10}



Directions?



Directions?

• Implement compiler optimizations



Directions?

• Implement compiler optimizations
• Probably need to prove something about Heyting Kleene

Algebras with Tests



Directions?

• Implement compiler optimizations
• Probably need to prove something about Heyting Kleene

Algebras with Tests

• Beyond toy models



Directions?

• Implement compiler optimizations
• Probably need to prove something about Heyting Kleene

Algebras with Tests

• Beyond toy models
• Lustre


