
Intrinsically correct sorting using bialgebraic semantics

Cass Alexandru

2024-07-28

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 1 / 11

Background

“Sorting with Bialgebras and Distributive Laws” (HJHWM, 2012)
Intrinsically correct version using the same categorical construction
Brief recap, identify problems, state our solution

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 2 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Insertion Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 3 / 11

Analyzing its recursion behaviour

InsertionSort is a fold over the input list

We start with the empty list and build up an ordered list
The argument algebra to this fold is inself an unfold

we output elements of the ordered list at each step
The seed is an an unordered pair of element and ordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 4 / 11

Analyzing its recursion behaviour

InsertionSort is a fold over the input list
We start with the empty list and build up an ordered list

The argument algebra to this fold is inself an unfold

we output elements of the ordered list at each step
The seed is an an unordered pair of element and ordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 4 / 11

Analyzing its recursion behaviour

InsertionSort is a fold over the input list
We start with the empty list and build up an ordered list

The argument algebra to this fold is inself an unfold

we output elements of the ordered list at each step
The seed is an an unordered pair of element and ordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 4 / 11

Analyzing its recursion behaviour

InsertionSort is a fold over the input list
We start with the empty list and build up an ordered list

The argument algebra to this fold is inself an unfold
we output elements of the ordered list at each step

The seed is an an unordered pair of element and ordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 4 / 11

Analyzing its recursion behaviour

InsertionSort is a fold over the input list
We start with the empty list and build up an ordered list

The argument algebra to this fold is inself an unfold
we output elements of the ordered list at each step
The seed is an an unordered pair of element and ordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 4 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Selection Sort

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 5 / 11

Analyzing its recursion behaviour

SelectionSort is an unfold over the input list

We output elements of the ordered list at each step
The seed is an unordered list, initially the whole input list

The argument coalgebra to this unfold is itself a fold

We start at the bottom of the list and output an ordered pair of
element and unordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 6 / 11

Analyzing its recursion behaviour

SelectionSort is an unfold over the input list
We output elements of the ordered list at each step

The seed is an unordered list, initially the whole input list
The argument coalgebra to this unfold is itself a fold

We start at the bottom of the list and output an ordered pair of
element and unordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 6 / 11

Analyzing its recursion behaviour

SelectionSort is an unfold over the input list
We output elements of the ordered list at each step
The seed is an unordered list, initially the whole input list

The argument coalgebra to this unfold is itself a fold

We start at the bottom of the list and output an ordered pair of
element and unordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 6 / 11

Analyzing its recursion behaviour

SelectionSort is an unfold over the input list
We output elements of the ordered list at each step
The seed is an unordered list, initially the whole input list

The argument coalgebra to this unfold is itself a fold

We start at the bottom of the list and output an ordered pair of
element and unordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 6 / 11

Analyzing its recursion behaviour

SelectionSort is an unfold over the input list
We output elements of the ordered list at each step
The seed is an unordered list, initially the whole input list

The argument coalgebra to this unfold is itself a fold
We start at the bottom of the list and output an ordered pair of
element and unordered list

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 6 / 11

Bialgebraic semantics

swap : {x : Set ℓ'} → L (x × O x) → O (x ⊎ L x)

swap [] = []ᵀ

swap (a ∷ (r , []ᵀ)) = a ≤∷ inl r

swap (a ∷ (r , b ≤∷ r')) with a ≤?≥ b

...| inl a≤b = a ≤∷ inl r

...| inr b≤a = b ≤∷ inr (a ∷ r')

insertSort↿ = fold (apo (swap ∘ L₁ ⟨ id , out ⟩))

selectSort↿ = unfold (para (O₁ [id , ın] ∘ swap))

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 7 / 11

The Problem

We need to specify what it means for a sorting algorithm to be correct
Problematic use of unfold:

unfold : {X : Set ℓ'} (grow : X → O X) → X → νO

unfold grow seed with grow seed

...| []ᵀ = ⌊[]ᵀ⌋

...| (x ≤∷ seed') = ⌊ x ≤∷ unfold grow seed' ⌋

repeat a = unfold (λ tt → a ≤∷ tt) tt

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 8 / 11

Specification of Sorting

The output list must be ordered, i.e. all pairs of consecutive elements
are related to each other via the ordering relation ≤.
The second rule of sorting is: The output is a permutation of the
input.

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 9 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)

Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index
Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)
Acts as a size parameter: All coalgebras are well founded!
This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along
Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)
Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index

Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)
Acts as a size parameter: All coalgebras are well founded!
This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along
Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)
Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index
Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)

Acts as a size parameter: All coalgebras are well founded!
This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along
Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)
Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index
Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)
Acts as a size parameter: All coalgebras are well founded!

This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along
Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)
Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index
Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)
Acts as a size parameter: All coalgebras are well founded!
This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along
Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)
Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index
Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)
Acts as a size parameter: All coalgebras are well founded!
This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along

Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

The Solution

Our solution: index lists by the finite multiset of their elements (a QIT)
Output is a permutation of the input ⇔ Mapping a list to the
multiset of its element is invariant under sorting ⇔ sorting preserves
the FMSet index
Use it to encode ordering at the level of the ordered list base functor
using All (x ≤_) (similar to “Fresh Lists”)
Acts as a size parameter: All coalgebras are well founded!
This also works for the other sorting algorithms formalized in Hinze et
al. 2012

More lemmata about equalities (paths) in FMSet A to substitute along
Well foundedness of coalgebras proven using WFI on the length of the
FMSet index

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 10 / 11

swap, refined

swap : {g : FMSet A} {r : FMSet A → Type ℓ} → L ((O ₓ) r) g → O ((L ₊) r) g

swap [] = []

swap (a ∷ (x , [])) = (a ≤∷ inl x) []-A

swap (a ∷ (x , (b ≤∷ x') b#x')) with a ≤?≥ b

...| inl a≤b = (a ≤∷ inl x) $ a≤b ∷-A ≤-to-# a≤b b#x'

...| inr b≤a = (b ≤∷ inr (a ∷ x')) $ b≤a ∷-A b#x' €

subst (O ((L ₊) _)) (comm _ _ _)

Cass Alexandru Correct Sorting using Bialg. Semantics 2024-07-28 11 / 11

	The Solution

