Intrinsically correct sorting using bialgebraic semantics

Cass Alexandru

2024-07-28

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

- "Sorting with Bialgebras and Distributive Laws" (HJHWM, 2012)
- Intrinsically correct version using the same categorical construction
- Brief recap, identify problems, state our solution

イロト イヨト イヨト イヨト

<ロト < 四ト < 三ト < 三ト

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

<ロト < 四ト < 三ト < 三ト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

・ロト ・四ト ・ヨト

・ロト ・四ト ・ヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

InsertionSort is a fold over the input list

InsertionSort is a fold over the input list

We start with the empty list and build up an ordered list

InsertionSort is a *fold* over the input list

- We start with the empty list and build up an ordered list
- The argument algebra to this fold is inself an *unfold*

- InsertionSort is a fold over the input list
 - We start with the empty list and build up an ordered list
- The argument algebra to this fold is inself an *unfold*
 - we output elements of the ordered list at each step

- InsertionSort is a *fold* over the input list
 - We start with the empty list and build up an ordered list
- The argument algebra to this fold is inself an *unfold*
 - we output elements of the ordered list at each step
 - The seed is an an unordered pair of element and ordered list

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

<ロト < 四ト < 三ト < 三ト

<ロト < 四ト < 三ト < 三ト

イロト イヨト イヨト イヨト

<ロト < 四ト < 三ト < 三ト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

<ロト < 四ト < 三ト < 三ト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

<ロト < 四ト < 三ト < 三ト

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

イロト イヨト イヨト イヨト

Cass Alexandru

Correct Sorting using Bialg. Semantics

2024-07-28

<ロト < 四ト < 三ト < 三ト

SelectionSort is an unfold over the input list

SelectionSort is an unfold over the input list

We output elements of the ordered list at each step

SelectionSort is an unfold over the input list

- We output elements of the ordered list at each step
- The seed is an unordered list, initially the whole input list

- SelectionSort is an unfold over the input list
 - We output elements of the ordered list at each step
 - The seed is an unordered list, initially the whole input list
- The argument coalgebra to this unfold is itself a *fold*

- SelectionSort is an unfold over the input list
 - We output elements of the ordered list at each step
 - The seed is an unordered list, initially the whole input list
- The argument coalgebra to this unfold is itself a *fold*
 - We start at the bottom of the list and output an *ordered* pair of element and unordered list

```
\begin{aligned} swap : \{x : Set \ell'\} \rightarrow L (x \times 0 x) \rightarrow 0 (x \uplus L x) \\ swap [] = []^{\mathsf{T}} \\ swap (a :: (r , []^{\mathsf{T}})) = a \leq :: inl r \\ swap (a :: (r , b \leq :: r')) with a \leq ? \geq b \\ \dots | inl a \leq b = a \leq :: inl r \\ \dots | inr b \leq a = b \leq :: inr (a :: r') \end{aligned}
```

```
insertSort1 = fold (apo (swap • L1 ( id , out )))
selectSort1 = unfold (para (01 [ id , 1n ] • swap))
```

We need to specify what it means for a sorting algorithm to be correctProblematic use of unfold:

```
unfold : {X : Set \ell'} (grow : X \rightarrow 0 X) \rightarrow X \rightarrow \nu0unfold grow seed with grow seed...| []<sup>T</sup>= L[]<sup>T</sup>J...| (x \leq:: seed') = L x \leq:: unfold grow seed' J
```

```
■ repeat a = unfold (\lambda tt \rightarrow a \leq:: tt) tt
```

- The output list must be *ordered*, i.e. all pairs of consecutive elements are related to each other via the ordering relation ≤.
- The second rule of sorting is: The output is a permutation of the input.

Our solution: index lists by the finite multiset of their elements (a QIT)

< 47 ▶

Our solution: index lists by the finite multiset of their elements (a QIT)

■ Output is a permutation of the input ⇔ Mapping a list to the multiset of its element is invariant under sorting ⇔ sorting preserves the FMSet index

- Output is a permutation of the input ⇔ Mapping a list to the multiset of its element is invariant under sorting ⇔ sorting preserves the FMSet index
- Use it to encode ordering at the level of the ordered list base functor using All (x ≤_) (similar to "Fresh Lists")

- Output is a permutation of the input ⇔ Mapping a list to the multiset of its element is invariant under sorting ⇔ sorting preserves the FMSet index
- Use it to encode ordering at the level of the ordered list base functor using All (x ≤_) (similar to "Fresh Lists")
- Acts as a size parameter: All coalgebras are well founded!

- Output is a permutation of the input ⇔ Mapping a list to the multiset of its element is invariant under sorting ⇔ sorting preserves the FMSet index
- Use it to encode ordering at the level of the ordered list base functor using All (x ≤_) (similar to "Fresh Lists")
- Acts as a size parameter: All coalgebras are well founded!
- This also works for the other sorting algorithms formalized in Hinze et al. 2012

- Output is a permutation of the input ⇔ Mapping a list to the multiset of its element is invariant under sorting ⇔ sorting preserves the FMSet index
- Use it to encode ordering at the level of the ordered list base functor using All (x ≤_) (similar to "Fresh Lists")
- Acts as a size parameter: All coalgebras are well founded!
- This also works for the other sorting algorithms formalized in Hinze et al. 2012
 - More lemmata about equalities (paths) in FMSet A to substitute along

Our solution: index lists by the finite multiset of their elements (a QIT)

- Output is a permutation of the input ⇔ Mapping a list to the multiset of its element is invariant under sorting ⇔ sorting preserves the FMSet index
- Use it to encode ordering at the level of the ordered list base functor using All (x ≤_) (similar to "Fresh Lists")
- Acts as a size parameter: All coalgebras are well founded!
- This also works for the other sorting algorithms formalized in Hinze et al. 2012
 - More lemmata about equalities (paths) in FMSet A to substitute along
 - Well foundedness of coalgebras proven using WFI on the length of the FMSet index

2024-07-28

swap, refined

```
swap : {g : FMSet A} {r : FMSet A → Type ℓ} → L ((0 x) r) g → 0 ((L +) r) g
swap [] = []
swap (a :: (x , [])) = (a ≤:: inl x) []-A
swap (a :: (x , (b ≤:: x') b#x')) with a ≤?≥ b
...| inl a≤b = (a ≤:: inl x) $ a≤b ::-A ≤-to-# a≤b b#x'
...| inr b≤a = (b ≤:: inr (a :: x')) $ b≤a ::-A b#x' €
subst (0 ((L +) -)) (comm - -)
```

