Second-Order Generalised Algebraic Theories

Szumi Xie Eötvös Loránd Unviersity, Budapest

SPLV 2024, Glasgow

What's the simplest programming language?

- Tm : Sort
- $-\cdot -: Tm \rightarrow Tm \rightarrow Tm$
- K : Tm
- S : Tm
- $K\beta$: $K \cdot x \cdot y = x$
- $S\beta$: $S \cdot x \cdot y \cdot z = x \cdot z \cdot (y \cdot z)$

- Tm : Sort
- $-\cdot -:\mathsf{Tm}\to\mathsf{Tm}\to\mathsf{Tm}$
- $lam:(Tm \rightarrow Tm) \rightarrow Tm$
- β : (lam t) · u = t u

Tm : Sort $-\cdots : Tm \to Tm \to Tm$ $lam : (Tm \to Tm) \to Tm$ $\beta : (lam t) \cdot u = t u$ $\frac{\Gamma \vdash t \quad \Gamma \vdash u}{\Gamma \vdash t \cdot u} \qquad \frac{\Gamma, x \vdash t}{\Gamma \vdash lam t} \qquad \frac{\Gamma, x \vdash t \quad \Gamma \vdash u}{\Gamma \vdash (lam t) \cdot u = t[u/x]}$

First-order-ification

First-order-ification

Con : Sort Sub : Con \rightarrow Con \rightarrow Sort Tm : Con \rightarrow Sort id : Sub **Г Г** $-\circ -$: Sub $\Delta \Gamma \rightarrow$ Sub $\Theta \Delta \rightarrow$ Sub $\Theta \Gamma$ -[-]: Tm $\Gamma \rightarrow$ Sub $\Delta \Gamma \rightarrow$ Tm Δ : Con 0 : Sub F 🕹 3 $-\triangleright$: Con \rightarrow Con р : Sub (Г⊳) Г q : Tm (Γ⊳) -,-: Sub $\Delta \Gamma \rightarrow \text{Tm } \Delta \rightarrow \text{Sub } \Delta (\Gamma \triangleright)$ $-\cdot -$: Tm $\Gamma \rightarrow$ Tm $\Gamma \rightarrow$ Tm Γ lam : Tm $(\Gamma \triangleright) \rightarrow$ Tm Γ

 $id \circ \sigma = \sigma$ $\sigma \circ id = \sigma$ $(\sigma \circ \delta) \circ v = \sigma \circ (\delta \circ v)$ t[id] = t $t[\sigma \circ \delta] = t[\sigma][\delta]$ $\varepsilon = (\sigma : \text{Sub } \Gamma \diamond)$ $p \circ (\sigma, t) = \sigma$ $q[\sigma,t] = t$ $(p \circ \sigma, q[\sigma]) = \sigma$ $(t \cdot u)[\sigma] = (t[\sigma]) \cdot (u[\sigma])$ $(\operatorname{lam} t)[\sigma] = \operatorname{lam} (t[\sigma \circ p, q])$ β : (lam t) $\cdot u = t$ [id, u]

Languages which can be defined as SOGATs

Non-substructural languages

Non-substructural languages:

- Simply typed lambda calculus
- First-order logic
- System F
- Dependent type theory

Non-substructural languages:

- Simply typed lambda calculus
- First-order logic
- System F
- Dependent type theory
- Theory of SOGAT signatures

Non-substructural languages:

- Simply typed lambda calculus
- First-order logic
- System F
- Dependent type theory
- Theory of SOGAT signatures
- Higher observational type theory