
  

A tale of 
two 
compilers



  

Part I. The first compiler

Long ago, I was approached by a researcher in 
Japan about the possibility of accelerating 
meteorological code on FPGAs. 



  

Japan!



  

First contact
This was my first contact 

with FORTRAN 77



  

A source-to-source compiler
● There was no Fortran front end for LLVM 
● LLVM itself was quite immature
● So I decided to write my own, case-specific 

source-to-source translator from FORTRAN 77 
to Fortran 95 

● Which language?



  

Which language?
● I know!
● I will write it in Haskell ...



  

Haskell!



  

Haskell?
● Compiling Haskell to a platform independent 

static binary?



  

無理
(impossible)



  

Haskell?
● Expecting my friend to compile Haskell code 

on his platform?



  

 無理！
(impossible!)



  

a suitable alternative...
● So I needed a different language, platform-

independent, ubiquitous, ...
● Luckily, there is such a language, very similar 

to Haskell …



  

very similar to Haskell ...
(apart from being 

 interpreted, 

 dynamically typed, 

 strict, and 

 whitespace-insensitve)



  

... Perl    

language is ideology



  

Perl ...    



  

So I wrote a source to source compiler from 
FORTRAN 77 to Fortran 90,

and from there to OpenCL and many other 
things besides.

It was fun (and there was profit).



  

And it was hard.

But not because of Perl;

because of FORTRAN.

https://fortran-lang.org/


  

FORTRAN

● One card per statement, e.g. Z(1) = Y + W(1) 
● One column per character



  

from
 IB

M
 FO

R
TR

A
N

 II G
eneral Inform

ation M
anual, 1961



  

FORTRAN 
● Implicit typing: variable names starting with I to N are 
INTEGER, rest are REAL

● No pointers, but plenty of rope via COMMON and 
EQUIVALENCE

● “Playful” attitude to type safety
● Control flow via jumps to labels
● No dynamic allocation



  

FORTRAN 77 
● Has n-dimensional arrays that know their size and 

shape
● And even limited higher-order function support
● There are type declarations
● And control flow is marginally better



  

Fortran 90/95

&

&



  

Fortran 90/95
● Much better type annotations, with attributes  
● Specifically: intent, kind
● Allows to define derived types (record types)
● Subroutines and functions can have explicit pure and 
recursive qualifiers

● Has pointers and dynamic allocation
● Has a decent module system



  

Fortran in 2024
● Latest standard: ISO/IEC 1539:2023
● Released November 17, 2023
● But most code is still effectively F77/F95
● Still the dominant supercomputer workload



  



  

Part II. The second compiler
Many years later, in my corner of the internet, 
I met Hundred Rabbits, a small artist collective.

They live on sail boat 
and had a need for a 
really frugal compute 
stack.

So they made one. 

https://100r.co/site/home.html


  

The VM: Uxn
An 8-bit VM with 64 kB memory

Shared code and data 

Stack-based, no registers

Two stacks of 256 bytes

I/O is done via devices



  

The language: Uxntal



  

Uxntal
● Assembly language
● Postfix syntax
● Not whitespace-sensitve
● Opcodes with modifiers (2,k,r)
● Non-word characters (“runes”) are used to 

indicate type of label/addressing



  

Funktal
● I wanted to see if it was possible 

to create a statically typed 
functional language with ADTs and 
function types for this platform. 

● It was
● Enter Funktal, an art project



  

 



  



  



  



  



  

Harm, evil, purity and foolishness
● "the go to statement should be abolished" 

-- E. W. Dijkstra, 'Go To Statement Considered Harmful', Comm. ACM, 1968

● "Global variables are evil" 
-- P. Koopman, 'Better Embedded System Software', Ch 19, 2010

● Goto: "not for the faint of heart (nor for the pure of 
heart)"
Global variables: "help you not to use global 
variables--or at least, not use them foolishly."
-- paraphrased from 'Programming Perl' by L. Wall et al., 2000



  



  

Part III. The first compiler, revisited
The Funktal compiler ended up being ~8,000 
lines of code. Too much to port manually; 
also, what’s the fun?

So I started on an Uxntal backend for my 
Fortran compiler, to compile the compiler to 
Uxntal.



  

Fortran to Uxntal
● “Fortran argument association is usually similar to call by 

reference and call by value-result.” (ISO/IEC 1539-1:2004)
● Function calls and recursion: we don’t want stack 

frames by default, too much overhead. So we analyse 
the code and only use stack frames for non-tail 
recursion.

● Most other issues are to do with string manipulation.



  

Keeping it small
● Constant propagation, constant folding (easy with 
eval), branch elimination

● Only use a call stack when necessary. Therefore, 
static analysis of tail recursion. 

But the only tail call optimisation is not to use a call stack

● Minimal stack frame size calculated at compile time



  

Keeping it small
● Precomputed stack size

@reconstructTypeNameExpr
    push-frame
    #021e stack-alloc 
    ( … )
    !pop-frame



  

Keeping it simple
● Function arguments passed via the stack but 

stored in memory unless a call stack is 
necessary. The assembler* will optimise this.  

@add 
    ADD     
  JMP2r 

@add ,&x STR ,&y STR
    ,&x LDR ,&y LDR ADD ,&z STR
    ,&z LDR JMP2r
&x $1 &y $1 &z $1 ( static alloc )

(*yes, I wrote an assembler as well, but that’s another story)



  

Keeping it simple
● Use of higher-order functions and Uxntal's 

lambda functions, e.g.
map (\iter-> rawhex8toStr_csu[iter]=0) 2 .. 8

{ 
  #00 ROT ROT ;rawhex8toStr_csu ADD2 STA 
  JMP2r 
} STH2r
#0008 #0002 range-map-short



  



  

Coda: FRACTRAN
● An esoteric programming language created by John Conway
● A FRACTRAN program consists of and ordered list of 

positive fractions and an initial positive integer input n. The 
program is run by updating n as follows:
– for the first fraction f in the list for which n.f is an integer, 

replace n by n.f
– repeat this rule until no fraction in the list produces an 

integer when multiplied by n, then halt.

[1] Conway, John H. "Fractran: A simple universal programming language for arithmetic." 
Open problems in Communication and Computation. New York, NY: Springer New York, 1987. 4-26.



  

Fractran example: Fibonacci



  

Fractran virtual machine
● The fractions are an obfuscation: the FRACTRAN 

interpreter can be viewed as a machine with an 
infinite number of registers

● The program is an ordered list of terms; the terms 
are tuples of registers sets (t,n). 

● The input to the program is a separate register set 
acc (the accumulator).



  

Fractran virtual machine
● The rule for updating acc becomes: 

– Step 1: check if the term matches the accumulator.
● If a register from n occurs in acc, the value in acc must be greater than or equal to 

that in n.
● If that condition is met, go to Step 2

– Step 2: update the accumulator
● Increment the registers in acc with the values of the corresponding registers in t;
● Decrement the registers in acc with the values of the corresponding registers in n;
● Any reg in t that was not in acc is added to acc

– Step 3: run the program again for as long as one of the terms 
matches the accumulator.



  

Fractran as a rewrite system
If the LHS matches, execute the rule (dec based on LHS, 
inc based on RHS)

-- Keep going while the n register is present
    fib n => fibsft,
-- Shift the scrolling window to show two numbers
    fibsft last => fibsft B,fibsft res => fibsft A B, fibmv => fibsft,
-- Move the temporary registers back by one number
    fibmv A => fibmv last, fibmv B => fibmv res, fibmv => fib,
-- Cleanup temporary registers at the end of the program
    last =>, fib =>

See https://wiki.xxiivv.com/site/fractran for more info

https://wiki.xxiivv.com/site/fractran


  

Fractran in Fortran and Uxntal
● The core of the interpreter is about 50 lines of 

Fortran 90
● The Fortran to Uxntal compiler can handle 

this 😊
● And that is my tale so far



  

Thank you!



  

Code
● rf4a: github.com/wimvanderbauwhede/RefactorF4Acc
● uxn: git.sr.ht/~rabbits/uxn
● funktal: codeberg.org/wimvanderbauwhede/funktal
● yaku: codeberg.org/wimvanderbauwhede/yaku
● furakutoran: 

codeberg.org/wimvanderbauwhede/furakutoran

https://github.com/wimvanderbauwhede/RefactorF4Acc
https://git.sr.ht/~rabbits/uxn
https://codeberg.org/wimvanderbauwhede/funktal
https://codeberg.org/wimvanderbauwhede/yaku
https://codeberg.org/wimvanderbauwhede/furakutoran

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58

