Propositions as Types

Philip Wadler
University of Edinburgh

ACCL (POPL 1990)

Explicit Substitutions

M. Abadi* L. Cardelli*

Abstract

The Ao-calculus is a refinement of the A-calculus
where substitutions are manipulated explicitly. The
Aco-calculus provides a setting for studying the theory
of substitutions, with pleasant mathematical proper-
ties. It is also a useful bridge between the classical
A-calculus and concrete implementations.

P.-L. Curienf J.-J. Lévy?

The correspondence between the theory and its im-
plementations becomes highly nontrivial, and the cor-
rectness of the implementations can be compromised.

In this paper we study the Ae-calculus, a refine-
ment of the A-calculus [1] where substitutions are ma-
nipulated explicitly. Substitutions have syntactic rep-
resentations, and if a is a term and s is a substitution
then the term als] represents a with the substitution

ACCL (POPL 1990)

Beta

Varld
VarCons
App

Abs

Clos

IdL
Shiftld
ShiftCons
Map

Ass

(Aa)b = a[b- id]

i[id] =1

lla:-s]|=a

(ba)[s] = (bls])(als])
(Aa)[s] = Ma[1-(so 1))
als}[t] = a[so]

idos =

Yoid =4

to(a's)=s
(a-s)ot=alft] (so¥)
(5,05,) 08, = §,0(5,0,).

Autosubst (ITP 2015)

Autosubst: Reasoning with de Bruijn
Terms and Parallel Substitution

Steven Schafer Tobias Tebbi Gert Smolka

Saarland University
June 10, 2015

To appear in Proc. of ITP 2015, Nanjing, China, Springer LNAI

Reasoning about syntax with binders plays an essential role in the formal-
ization of the metatheory of programming languages. While the intricacies of
binders can be ignored in paper proofs, formalizations involving binders tend
to be heavyweight. We present a discipline for syntax with binders based on
de Bruijn terms and parallel substitutions, with a decision procedure covering
all assumption-free equational substitution lemmas. The approach is imple-
mented in the Coq library AUTOSUBST, which additionally derives substitu-
tion operations and proofs of substitution lemmas for custom term types.
We demonstrate the effectiveness of the approach with several case studies,
including part A of the POPLmark challenge.

Autosubst (ITP 2015)

(st)lo] = (sloD(tlo]) ideo =0
(A.s)[o]l=A. (s[0-0 0 1]) ooid=o0
Ols-o]l=s (CoT)o@=00(To0)
to(s-0)=0 (s-0)oT=58[T]-0o0T
slid] = s slo]lTt] =slooT]
Olog]-(to0o)=0 0-t=id

Figure 1: The convergent rewriting system of the o-calculus

ACMM (CPP 2017)

Type-and-Scope Safe Programs and Their Proofs

Guillaume Allais

gallais@cs.ru.nl

Radboud University,
The Netherlands

Abstract

We abstract the common type-and-scope safe structure from
computations on A-terms that deliver, e.g., renaming, sub-
stitution, evaluation, CPS-transformation, and printing with
a name supply. By exposing this structure, we can prove
generic simulation and fusion lemmas relating operations
built this way. This work has been fully formalised in Agda.

Conor McBride

{james.chapman,conor.mcbride} @strath.ac.uk
University of Strathclyde, UK

James Chapman

James McKinna

james.mckinna@ed.ac.uk
University of Edinburgh, UK

n:(o.VarocI' - Varoc A) —
ren p (‘var v) = ‘var (p v)
renp(f '$t) =renp f'Srenpt
renp(‘Ab) ="'A(ren ((suep)—,ze)b)

Vo. TmoI' > Tmo A)

sub : (Vo.Vare I' - Tmo A) —

ath n(‘varm = an

VMo. Tmo I’ > Tmo A)

ACMM (CPP 2017)

ren . (Vo.Varoc I' > Varc A) > (Vo. Tmo I' - Tmo A)
ren p (‘var v) = ‘var (p v)

renp(f '$t) =renp f ‘Srenpt

renp(‘Ab) ="'A(ren((suep)—,ze)b)

sub: (Vo.VareI' > Tmo A) - (Vo. Tmo I - Tmo A)
sub p (‘varv) =pv

subp (f '$t) =subp f '$Ssubpt

subp (‘A b) ="'A(sub((rensu-ep)—, ‘var ze) b)

Figure 1. Renaming and Substitution for the STAC

kit: (Vo.Vare I’ - @04 > (Vo. Tmo I’ > Tmo A)
kit p (‘var v) =Kit.var k (p v)

kitp (f'$St) =kitp f 'Skitpt

kitp (‘A b) ="'A (kit (Kit.wkn x o p) —, Kit.zro) b)

Figure 2. Kit traversal for the STAC, for k of type Kit ¢

ABW (CPP 2025?)

Substitution without copy and paste

Thorsten Altenkirch

University of Nottingham
Nottingham, United Kingdom
thorsten.altenkirch@nottingham.ac.uk

Abstract

When defining substitution recursively for a language with
binders like the simply typed A-calculus, we need to define
substitution and renaming separately. When we want to
verify the categorical properties of this calculus, we end up
repeating the same argument many times. In this paper we
present a lightweight method that avoids this repetition and
is implemented in Agda.

Nathaniel Burke
Imperial College London
London, United Kingdom

nathaniel.burke21@imperial.ac.uk

Philip Wadler
University of Edinburgh
Edinburgh, United Kingdom
wadler@inf.ed.ac.uk

dependent type theory which may have interesting applica-
tions for the coherence problem, i.e. interpreting dependent
types in higher categories.

1.1 In a nutshell

When working with substitution for a calculus with binders,
we find that you have to differentiate between renamings
(A EvT)where variables are substituted only for variables

ABW (CPP 2025?)

V[Jv: T >5A > A EvI - A > A
v[] :T>A > A ' - ArFA
[Jv :T A - AEVD - A+ A
] :TrHA - AET > AFrA

[]:T+r[q]A = A E[r]T - AFr[qUTr]A

