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add x y z =

x + y + z

GHC

Source

x86

s1ba_info: ; Code for helper (\a b -> a+b)

.Lc1bo: ; Check for stack space

leaq -40(%rbp),%rax

cmpq %r15,%rax

jb .Lc1bp ; Jump if stack full

.Lc1bq: ; Reduce helper

movq $stg_upd_frame_info,-16(%rbp)

movq %rbx,-8(%rbp)

movq 16(%rbx),%rax ; Load a & b from heap

movq 24(%rbx),%rbx

movl $base_GHCziNum_zdfNumInt_closure,%r14d

;; Push `a+b` onto stack

movq $stg_ap_pp_info,-40(%rbp)

movq %rax,-32(%rbp)

movq %rbx,-24(%rbp)

addq $-40,%rbp

jmp base_GHCziNum_zp_info ; Enter

.Lc1bp: ; Ask RTS for stack space

jmp *-16(%r13)

Add_add_info: ; Code for `add`

.Lc1br: ; Check for stack space

leaq -24(%rbp),%rax

cmpq %r15,%rax

jb .Lc1bs ; Jump if stack full

.Lc1bt: ; Check for heap space

addq $32,%r12

cmpq 856(%r13),%r12

ja .Lc1bv ; Jump if heap full

.Lc1bu: ; Reduce `add`

;; Build `x+y` thunk on heap

movq $s1ba_info,-24(%r12)

movq %r14,-8(%r12)

movq %rsi,(%r12)

leaq -24(%r12),%rax

movl $base_GHCziNum_zdfNumInt_closure,%r14d

;; Push `thunk+z` to stack

movq $stg_ap_pp_info,-24(%rbp)

movq %rax,-16(%rbp)

movq %rdi,-8(%rbp)

addq $-24,%rbp

jmp base_GHCziNum_zp_info ; Enter

.Lc1bv: ; Ask RTS for heap space

movq $32,904(%r13)

.Lc1bs: ; Ask RTS for stack space

movl $Add_add_closure,%ebx

jmp *-8(%r13)
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Heron

noun [ C ]

/”her. en/

A graph reduction processor.

Performs template instantiation in one clock

cycle via multiple, wide, multi-ported memories.

0Ramsay and Stewart, “Heron: Modern Graph Reduction Hardware”.
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Template example

enumFrom :: Int -> [Int]

enumFrom n = let m = n + 1

ns = enumFrom m

in Cons n ns

let APP [ ARG True 0, PRI 2 +, INT 1 ]

APP [ FUN True 1 0, VAR False 0, ]

in APP [ CON 2 0, ARG True 0, VAR False 1 ]
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Heap is on-chip & small

(think L1/L2 cache)
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long spines

(f x y) + (g z)

⇒ f x y g z +
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reference counting!
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Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
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Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020
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“On these [von Neumann style] machines,

real-time garbage collection inevitably causes

some overhead on the overall execution”
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Function alloc (app):

heap[hp] ←− app

hp++
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1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.
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Function alloc (app):
a ←− pop from freelist

if allocBarrier(gcPhase, a)

then
tag a as Marked

else
tag a as Unmarked

heap[a] ←− app
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tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
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“The nofib cases are quite mixed [...] most

tests slow down, with a median of +21%”
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increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
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Key Observation:

Stock CPUs sequentialise write-barriers

(trades-off GC latency for throughput)

Custom hardware + read-

first memories grants us both
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Wall-clock times vs GHC -O2

Heron median = 1.30

GHC + i7-1250U @ 4.7 GHz GHC + i7-1250U @ ≈2 GHz Heron @ 185 MHz
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Wall-clock times vs GHC -O0

Heron median = 1.06

GHC + i7-1250U @ 4.7 GHz GHC + i7-1250U @ ≈2 GHz Heron @ 185 MHz
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Conclusion

A tiny template instantiation core nearly keeps up with a modern CPU

running at x10 speed!

Assisted by a fully concurrent GC (modulo ≈20 cycles per pass).

Lays a path towards a single-chip multi-core architecture.

We want to see more research towards custom FP architectures!
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