
Once bittern, twice shy

Revisiting hardware architectures for lazy functional languages with Heron

Craig Ramsay & Rob Stewart

September 2024

Heriot-Watt University

https://haflang.github.io/history

https://haflang.github.io/history

GRIP (1987–1996)

…What are those?!

≈2010

Reduceron

(Template inst.)

PilGRIM

(Programmed)

PHEONIX

(Programmed)

Cephalopode

(Combinators)

Cecil Accetti

(Combinators)

Heron

(Template inst.)

Massimult

(Combinators)

≈2017

Reduceron

(Template inst.)

PilGRIM

(Programmed)

PHEONIX

(Programmed)

Cephalopode

(Combinators)

Cecil Accetti

(Combinators)

Heron

(Template inst.)

Massimult

(Combinators)

≈2020

Reduceron

(Template inst.)

PilGRIM

(Programmed)

PHEONIX

(Programmed)

Cephalopode

(Combinators)

Cecil Accetti

(Combinators)

Heron

(Template inst.)

Massimult

(Combinators)

≈2022

Reduceron

(Template inst.)

PilGRIM

(Programmed)

PHEONIX

(Programmed)

Cephalopode

(Combinators)

Cecil Accetti

(Combinators)

Heron

(Template inst.)

Massimult

(Combinators)

≈2023

Reduceron

(Template inst.)

PilGRIM

(Programmed)

PHEONIX

(Programmed)

Cephalopode

(Combinators)

Cecil Accetti

(Combinators)

Heron

(Template inst.)

Massimult

(Combinators)

HAFLANG Project

add x y z =

x + y + z

GHC

Source

x86

s1ba_info: ; Code for helper (\a b -> a+b)

.Lc1bo: ; Check for stack space

leaq -40(%rbp),%rax

cmpq %r15,%rax

jb .Lc1bp ; Jump if stack full

.Lc1bq: ; Reduce helper

movq $stg_upd_frame_info,-16(%rbp)

movq %rbx,-8(%rbp)

movq 16(%rbx),%rax ; Load a & b from heap

movq 24(%rbx),%rbx

movl $base_GHCziNum_zdfNumInt_closure,%r14d

;; Push `a+b` onto stack

movq $stg_ap_pp_info,-40(%rbp)

movq %rax,-32(%rbp)

movq %rbx,-24(%rbp)

addq $-40,%rbp

jmp base_GHCziNum_zp_info ; Enter

.Lc1bp: ; Ask RTS for stack space

jmp *-16(%r13)

Add_add_info: ; Code for `add`

.Lc1br: ; Check for stack space

leaq -24(%rbp),%rax

cmpq %r15,%rax

jb .Lc1bs ; Jump if stack full

.Lc1bt: ; Check for heap space

addq $32,%r12

cmpq 856(%r13),%r12

ja .Lc1bv ; Jump if heap full

.Lc1bu: ; Reduce `add`

;; Build `x+y` thunk on heap

movq $s1ba_info,-24(%r12)

movq %r14,-8(%r12)

movq %rsi,(%r12)

leaq -24(%r12),%rax

movl $base_GHCziNum_zdfNumInt_closure,%r14d

;; Push `thunk+z` to stack

movq $stg_ap_pp_info,-24(%rbp)

movq %rax,-16(%rbp)

movq %rdi,-8(%rbp)

addq $-24,%rbp

jmp base_GHCziNum_zp_info ; Enter

.Lc1bv: ; Ask RTS for heap space

movq $32,904(%r13)

.Lc1bs: ; Ask RTS for stack space

movl $Add_add_closure,%ebx

jmp *-8(%r13)

add x y z =

x + y + z

GHC

Source

x86

s1ba_info: ; Code for helper (\a b -> a+b)

.Lc1bo: ; Check for stack space

leaq -40(%rbp),%rax

cmpq %r15,%rax

jb .Lc1bp ; Jump if stack full

.Lc1bq: ; Reduce helper

movq $stg_upd_frame_info,-16(%rbp)

movq %rbx,-8(%rbp)

movq 16(%rbx),%rax ; Load a & b from heap

movq 24(%rbx),%rbx

movl $base_GHCziNum_zdfNumInt_closure,%r14d

;; Push `a+b` onto stack

movq $stg_ap_pp_info,-40(%rbp)

movq %rax,-32(%rbp)

movq %rbx,-24(%rbp)

addq $-40,%rbp

jmp base_GHCziNum_zp_info ; Enter

.Lc1bp: ; Ask RTS for stack space

jmp *-16(%r13)

Add_add_info: ; Code for `add`

.Lc1br: ; Check for stack space

leaq -24(%rbp),%rax

cmpq %r15,%rax

jb .Lc1bs ; Jump if stack full

.Lc1bt: ; Check for heap space

addq $32,%r12

cmpq 856(%r13),%r12

ja .Lc1bv ; Jump if heap full

.Lc1bu: ; Reduce `add`

;; Build `x+y` thunk on heap

movq $s1ba_info,-24(%r12)

movq %r14,-8(%r12)

movq %rsi,(%r12)

leaq -24(%r12),%rax

movl $base_GHCziNum_zdfNumInt_closure,%r14d

;; Push `thunk+z` to stack

movq $stg_ap_pp_info,-24(%rbp)

movq %rax,-16(%rbp)

movq %rdi,-8(%rbp)

addq $-24,%rbp

jmp base_GHCziNum_zp_info ; Enter

.Lc1bv: ; Ask RTS for heap space

movq $32,904(%r13)

.Lc1bs: ; Ask RTS for stack space

movl $Add_add_closure,%ebx

jmp *-8(%r13)

Heron

noun [C]

/”her. en/

A graph reduction processor.

Performs template instantiation in one clock

cycle via multiple, wide, multi-ported memories.

0Ramsay and Stewart, “Heron: Modern Graph Reduction Hardware”.

Heron

noun [C]

/”her. en/

A graph reduction processor.

Performs template instantiation in one clock

cycle via multiple, wide, multi-ported memories.

0Ramsay and Stewart, “Heron: Modern Graph Reduction Hardware”.

Template example

enumFrom :: Int -> [Int]

enumFrom n = let m = n + 1

ns = enumFrom m

in Cons n ns

let APP [ARG True 0, PRI 2 +, INT 1]

APP [FUN True 1 0, VAR False 0,]

in APP [CON 2 0, ARG True 0, VAR False 1]

Template example

enumFrom :: Int -> [Int]

enumFrom n = let m = n + 1

ns = enumFrom m

in Cons n ns

let APP [ARG True 0, PRI 2 +, INT 1]

APP [FUN True 1 0, VAR False 0,]

in APP [CON 2 0, ARG True 0, VAR False 1]

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Heap is on-chip & small

(think L1/L2 cache)

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Next reduction rule always*

chosen by matching

top of stack

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Postfix prims for

long spines

(f x y) + (g z)

⇒ f x y g z +

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

…But what about

heap updates?

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Avoid most updates via

run-time sharing analysis!

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

Control Logic

Reduction Stack

SP − 1
SP − 2
SP − 3
SP − 4
SP − 5
SP − 6

PRS Reg
.
.
.

AddrA DataA

Heap

Data Addr

Templates

Update Stack

template ptr

.

.

.

Case Alt Stack

(stack size, ptr)

.

.

.

ALU ALU

AddrB DataB

Primitive Stack

int

.

.

.

Avoid most updates via

run-time sharing analysis!

Atoms

= FUN s a n

| CON a n

| VAR s n

| INT n

| PRI a ⊗
| ARG s n

| REG n

≈ One-bit

reference counting!

Reference counting

Lazy reclamation

Deferred reference counting

Mark-and-sweep

Concurrent

tracing
Copying

Generational

Reference counting

Lazy reclamation

Deferred reference counting

Mark-and-sweep

Concurrent

tracing
Copying

Generational

Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020

Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020

“On these [von Neumann style] machines,

real-time garbage collection inevitably causes

some overhead on the overall execution”

Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020

Function alloc (app):

heap[hp] ←− app

hp++

Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020

Function alloc (app):
a ←− pop from freelist

if allocBarrier(gcPhase, a)

then
tag a as Marked

else
tag a as Unmarked

heap[a] ←− app

Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020

“The nofib cases are quite mixed [...] most

tests slow down, with a median of +21%”

Software for Concurrent GC

Alligator Collector: A Latency-Optimized Garbage
Collector for Functional Programming Languages

Ben Gamari
Well-Typed LLP
London, U.K.

ben@well-typed.com

Laura Dietz
University of New Hampshire

Durham, NH, U.S.A.
dietz@cs.unh.edu

Abstract
Modern hardware and applications require runtime systems
that can operate under large-heap and low-latency require-
ments. Formany client/server or interactive applications, re-
ducing average and maximum pause times is more impor-
tant than maximizing throughput.

The GHC Haskell runtime system version 8.10.1 offers a
new latency-optimized garbage collector as an alternative
to the existing throughput-optimized copying garbage col-
lector. This paper details the latency-optimized GC design,
which is a generational collector integrating GHC’s exist-
ing collector and bump-pointer allocatorwith a non-moving
collector and non-moving heap suggested byUeno andOhori.
We provide an empirical analysis on the latency/throughput
tradeoffs. We augment the established nofib micro bench-
mark with a response-time focused benchmark that simu-
lates real-world applications such as LRU caches, web search,
and key-value stores.

CCS Concepts: • Software and its engineering → Gen-
eral programming languages.

Keywords: garbage collection implementations

ACM Reference Format:
Ben Gamari and Laura Dietz. 2020. Alligator Collector: A Latency-
OptimizedGarbage Collector for Functional Programming Languages.
In Proceedings of the 2020 ACM SIGPLAN International Symposium
on Memory Management (ISMM ’20), June 16, 2020, London, UK.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3381898.
3397214

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’20, June 16, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7566-5/20/06…$15.00
https://doi.org/10.1145/3381898.3397214

1 Introduction
A growing number of distributed systems and interactive
applications require fast system response times, while the
increased memory capacity of modern computers lead to a
higher expected memory consumption. Language runtime
systems are expected to handle large heaps while offering
low latency to the mutator. Like many language runtimes,
the GlasgowHaskell Compiler (GHC) uses a stop-the-world,
generational, copying garbage collector [18]. While this col-
lection strategy offers excellent memory locality, efficient
bump-pointer allocation, and straightforward parallel col-
lection, collections of the oldest generation (so-called “ma-
jor collections”) require to pause the mutator for durations
proportional to the size of the live heap. For this reason,
it is not uncommon for Haskell programs with many giga-
bytes of heap-managed data to exhibit pauses on the order
of seconds—which is unacceptable for many applications.

We introduce Alligator, a generational mark-and-sweep
garbage collector designed for the following requirements:

• Maintain predictable, fast (on the order of 10 millisec-
onds) pause times, even with many gigabytes of live
heap-managed data.

• Provide sufficiently cheap allocations to incur minimal
runtime overhead when used.

• Activated in the runtime-system without the need for
recompilation.

• Portable across platforms, requiring no platform-specific
virtual memory tricks.

A pure functional language like Haskell exhibits different
characteristics as typical imperative programs. While muta-
tion is ubiquitous in typical imperative programs, in func-
tional languages, the causes are either due to thunk updates
(due to lazy evaluation) or (often rare) explicitly-mutable ob-
jects such as mutable arrays and reference cells. However,
functional programs tend to be very allocation-heavy, often
producing gigabytes of short-lived objects per second.

GHCHaskell, unlike many high-level languages, is batch-
compiled to native code and does not target a virtual ma-
chine.This complicates garbage collector design as additional
barriers either must be compiled to object code, which poses
deployment challenges for users, or be sufficiently fast to be
generated unconditionally.

87

1990

2020

Key Observation:

Stock CPUs sequentialise write-barriers

(trades-off GC latency for throughput)

Custom hardware + read-

first memories grants us both

Cloaca

noun [C]

/kloh-ah-kuh/

A concurrent hardware

garbage collector for Heron

0Ramsay and Stewart, “Cloaca: A Concurrent Hardware Garbage Collector for Non-strict Functional Languages”.

Cloaca

noun [C]

/kloh-ah-kuh/

A concurrent hardware

garbage collector for Heron

0Ramsay and Stewart, “Cloaca: A Concurrent Hardware Garbage Collector for Non-strict Functional Languages”.

RAM

(read-first mode)

GC Node

Control Logic

A

B

Memory ManagementReduction Core

Arbitrator

Heap

Next frees
Reg

Request
Reg

Bubble
Reg

Mutation
FIFO

data GC Node

= FreeList Addr

| WorkList Addr

| Marked

| Unmarked

write a x = do

y <- readMem a

writeMem a x

pure y

RAM

(read-first mode)

GC Node

Control Logic

A

B

Memory ManagementReduction Core

Arbitrator

Heap

Next frees
Reg

Request
Reg

Bubble
Reg

Mutation
FIFO

data GC Node

= FreeList Addr

| WorkList Addr

| Marked

| Unmarked

write a x = do

y <- readMem a

writeMem a x

pure y

RAM

(read-first mode)

GC Node

Control Logic

A

B

Memory ManagementReduction Core

Arbitrator

Heap

Next frees
Reg

Request
Reg

Bubble
Reg

Mutation
FIFO

data GC Node

= FreeList Addr

| WorkList Addr

| Marked

| Unmarked

write a x = do

y <- readMem a

writeMem a x

pure y

Results

topEntity_LUT5_790

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT6_3240

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3242

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3246

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3248

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3249

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT5_788

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT6_3243

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3247

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3250

LUT6

O

I0

I1

I2

I3

I4

I5

mem_1_reg_6

RAMB36E2

CASOUTDBITERR
n/c

CASOUTSBITERR
n/c

DBITERR
n/c

SBITERR
n/c

ADDRENA

ADDRENB

CASDIMUXA

CASDIMUXB

CASDOMUXA

CASDOMUXB

CASDOMUXEN_A

CASDOMUXEN_B

CASINDBITERR

CASINSBITERR

CASOREGIMUXA

CASOREGIMUXB

CASOREGIMUXEN_A

CASOREGIMUXEN_B

CLKARDCLK

CLKBWRCLK

ECCPIPECE

ENARDEN

ENBWREN

INJECTDBITERR

INJECTSBITERR

REGCEAREGCE

REGCEB

RSTRAMARSTRAM

RSTRAMB

RSTREGARSTREG

RSTREGB

SLEEP

CASDOUTA[31:0]
n/c

CASDOUTB[31:0]
n/c

CASDOUTPA[3:0]
n/c

CASDOUTPB[3:0]
n/c

DOUTADOUT[31:0]

DOUTBDOUT[31:0]

DOUTPADOUTP[3:0]
n/c

DOUTPBDOUTP[3:0]
n/c

ECCPARITY[7:0]
n/c

RDADDRECC[8:0]
n/c

ADDRARDADDR[14:0]

ADDRBWRADDR[14:0]

CASDINA[31:0]

CASDINB[31:0]

CASDINPA[3:0]

CASDINPB[3:0]

DINADIN[31:0]

DINBDIN[31:0]

DINPADINP[3:0]

DINPBDINP[3:0]

WEA[3:0]

WEBWE[7:0]

c$nextAddrs_app_arg_0_reg[15]

Q

C

CE

D

R

topEntity_LUT5_852

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_859

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_888

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_853

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_854

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_858

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_860

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT5_887

LUT5

O

I0

I1

I2

I3

I4

topEntity_LUT6_3399

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT6_3403

LUT6

O

I0

I1

I2

I3

I4

I5

topEntity_LUT5_889

LUT5

O

I0

I1

I2

I3

I4

Which Architectures?

Heron GHC + Intel i7 1250U

Platform Xilinx Alveo U280 Performance Power-saver

Clock 185 MHz 4.7 GHz ≈2 GHz

Power est. 0.8W dynamic + Cores 15 W or Cores 2W or

3.1 W Static Package 16 W Package 6 W

Fabrication 16 nm (FPGA!) 10 nm 10 nm

Which Architectures?

Heron GHC + Intel i7 1250U

Platform Xilinx Alveo U280 Performance Power-saver

Clock 185 MHz 4.7 GHz ≈2 GHz

Power est. 0.8W dynamic + Cores 15 W or Cores 2W or

3.1 W Static Package 16 W Package 6 W

Fabrication 16 nm (FPGA!) 10 nm 10 nm

Which Architectures?

Heron GHC + Intel i7 1250U

Platform Xilinx Alveo U280 Performance Power-saver

Clock 185 MHz 4.7 GHz ≈2 GHz

Power est. 0.8W dynamic + Cores 15 W or Cores 2W or

3.1 W Static1 Package 16 W Package 6 W

Fabrication 16 nm (FPGA!) 10 nm 10 nm

1Heron only occupies 1.13% of any resource type though!

Which Architectures?

Heron GHC + Intel i7 1250U

Platform Xilinx Alveo U280 Performance Power-saver

Clock 185 MHz 4.7 GHz ≈2 GHz

Power est. 0.8W dynamic + Cores 15 W or Cores 2W or

3.1 W Static1 Package 16 W Package 6 W

Fabrication 16 nm (FPGA!) 10 nm 10 nm

1Heron only occupies 1.13% of any resource type though!

Wall-clock times vs GHC -O2

Heron median = 1.30

GHC + i7-1250U @ 4.7 GHz GHC + i7-1250U @ ≈2 GHz Heron @ 185 MHz

ad
jo
xo

br
au
n

ci
ch
ell
i

cl
au
si
fy

co
un
td
ow
n

kn
ut
hb
en
di
x

m
at
e

m
ss

or
dl
is
t

pe
rm
so
rt

qu
ee
ns

qu
ee
ns
2

su
m
pu
z

ta
ut

w
hi
le

0

2

4

6

N
or
m
al
is
ed

w
a
ll-
cl
oc
k
ti
m
e

Wall-clock times vs GHC -O0

Heron median = 1.06

GHC + i7-1250U @ 4.7 GHz GHC + i7-1250U @ ≈2 GHz Heron @ 185 MHz

ad
jo
xo

br
au
n

ci
ch
ell
i

cl
au
si
fy

co
un
td
ow
n

kn
ut
hb
en
di
x

m
at
e

m
ss

or
dl
is
t

pe
rm
so
rt

qu
ee
ns

qu
ee
ns
2

su
m
pu
z

ta
ut

w
hi
le

0

0.5

1

1.5

2

N
or
m
al
is
ed

w
a
ll-
cl
oc
k
ti
m
e

Conclusion

A tiny template instantiation core nearly keeps up with a modern CPU

running at x10 speed!

Assisted by a fully concurrent GC (modulo ≈20 cycles per pass).

Lays a path towards a single-chip multi-core architecture.

We want to see more research towards custom FP architectures!

Conclusion

A tiny template instantiation core nearly keeps up with a modern CPU

running at x10 speed!

Assisted by a fully concurrent GC (modulo ≈20 cycles per pass).

Lays a path towards a single-chip multi-core architecture.

We want to see more research towards custom FP architectures!

Conclusion

A tiny template instantiation core nearly keeps up with a modern CPU

running at x10 speed!

Assisted by a fully concurrent GC (modulo ≈20 cycles per pass).

Lays a path towards a single-chip multi-core architecture.

We want to see more research towards custom FP architectures!

Conclusion

A tiny template instantiation core nearly keeps up with a modern CPU

running at x10 speed!

Assisted by a fully concurrent GC (modulo ≈20 cycles per pass).

Lays a path towards a single-chip multi-core architecture.

We want to see more research towards custom FP architectures!

Questions?

	HAFLANG Project
	A graph reduction architecture

	Results
	Questions?

