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Semaphores
Object: entity with an implementation (hidden) and an interface (visible), made up of 

a set of operations and a specification of the behaviour (usually specified in a 
sequential way – e.g., as a set of legal executions).

Concurrent: if the objerct can be accessed by different processes

Semaphore: is a shared counter S accessed via primitives up and down s.t.:
1. It is initialized at s0 ≥ 0
2. up atomically increases S
3. down atomically decreases S, provided that it is greater than 0; otherwise, the 

invoking processes is blocked and waits.
Invariant:   S = s0 + #(S.up) –  #(S.down)

Main use: prevent busy waiting (suspend processes that cannot perform down)
• Strong, if uses a FIFO policy for blocking/unblocking processes, weak otherwise
• Binary, if it is at most 1 (so, also up are blocking)

2 underlying objects:
• A counter, initialized at s0
• A data structure (typicaly, a queue), initially empty, to store suspended proc’s
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Semaphores: ideal implementation
S.down() :=   S.up() :=
 S.counter--      S.counter++
 if S.counter < 0 then    if S.counter ≤ 0 then
  enter into S.queue  activate a proc from S.queue
  SUSPEND      return
 return

Remark 1: 
• if S.counter ≥ 0, then this is the number of proc’s that can perform down without 

suspending
• If S.counter < 0, then this tells us the number of proc’s that are suspended in S

Remark 2: all operations are in MUTEX
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Semaphores: actual implementation

Let t be a test&set register initialized at 0

S.down() :=   S.up() :=
 Disable interrupts     Disable interrupts
 wait S.t.test&set() = 0    wait S.t.test&set() = 0
 S.counter--      S.count++
 if S.counter < 0 then    if S.count ≤ 0 then
  enter into S.queue  activate a proc from S.queue
  S.t ß 0     S.t ß 0
  Enable interrupts    Enable interrupts
  SUSPEND      return
 else S.t ß 0
  Enable interrupts
 return

Remark: the interrupts are disabled only for efficiency issues (not to interrupt the 
semaphore operations with other – totally unrelated – operations).
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(Single) Producer/Consumer
It is a shared FIFO buffer of size k. Internal representation:
• BUF[0,…,k-1] : generic registers (not even safe) accessed in MUTEX
• IN/OUT : two variables pointing to locations in BUF to (circularly) insert/remove 

items, both initialized at 0
• FREE/BUSY : two semaphores that count the number of free/busy cells of BUF, 

initialized at k and 0 respectively.

B.produce(v) :=   B.consume() :=

   FREE.down()       BUSY.down()

   BUF[IN] ß v       tmp ß BUF[OUT]

   IN ß (IN+1) mod k      OUT ß (OUT+1) mod k

   BUSY.up()       FREE.up()

   return       return tmp
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(Multiple) Producers/Consumers
Consider this solution:
We have two extra semaphores SP and SC, both initialized at 1

 B.produce(v) :=  B.consume() :=

    SP.down()      SC.down()

 FREE.down() BUSY.down()

 BUF[IN] ß v tmp ß BUF[OUT]

 IN ß (IN+1) mod k OUT ß (OUT+1) mod k

 BUSY.up() FREE.up()

    SP.up()      SC.up()

    return      return tmp

It is correct, but inefficient.
 à reading from/writing into the buffer can be very expensive!
 à Accessing BUF in MUTEX slows down the implementation
 à so, it would be ideal to parallelize accesses to different locations
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(Multiple) Producers/Consumers
Actually, producers and consumers must mutually exclude only when they look for the 

cell to be written/read, respctively.
 B.produce(v) :=  B.consume() :=

    FREE.down()      BUSY.down()

    SP.down()      SC.down()

    i ß IN        o ß OUT

    IN ß (IN+1) mod k     OUT ß (OUT+1) mod k

    SP.up()      SC.up()

    BUF[i] ß v      tmp ß BUF[o]

    BUSY.up()      FREE.up()

    return      return tmp

Problem: 1 PROD, 2 CONS, 2 cells
• P writes cell0 , INß1 , BUSYß 1  ;   P writes cell1 , INß0 , BUSYß 2
• C1 starts reading cell0 (but it is very slow)
• C2 reads cell1 (quickly) and so FREE ß 1
• P thinks that it can go on writing and goes to cell0, that however is still busy 
     (with C1 reading)
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(Multiple) Producers/Consumers
Assume 2 arrays (FULL / EMPTY) of booleans, initialized at ff and tt, resp
B.produce(v) :=   B.consume() :=

   FREE.down()       BUSY.down()

   SP.down()       SC.down()

   while ¬EMPTY[IN] do      while ¬FULL[OUT] do

 IN ß (IN+1) mod k   OUT ß (OUT+1) mod k

   i ß IN       o ß OUT

   EMPTY[IN] ß ff      FULL[OUT] ß ff

   SP.up()       SC.up()

   BUF[i] ß v       tmp ß BUF[o]

   FULL[i] ß tt      EMPTY[o] ß tt

   BUSY.up()       FREE.up()

   return       return tmp

This solves the previous problem:
• the last write of P will discover that cell0 is still not empty (since C1 declares it empty only 

when it finishes reading it)
• So, P will go to write into cell1 (that indeed has been emptied by C2)
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Monitors
Semaphores are hard to use in practice because quite low level

Monitors provide an easier definition of concurrent objects at the level of Prog. Lang.
• A concurrent object that guarantees that at most one operation invocation at a time 

is active inside it
• Internal inter-process synchronization is provided through conditions
• Conditions are objects that provide the following operations:
• wait: the invoking process suspends, enters into the condition’s queue, and 

releases the mutex on the monitor
• signal: if no process is in the condition’s queue, then nothing happens. Otherwise

• Reactivates the first suspended process
• suspends the signaling process that however has a priority to re-enter 

the monitor (w.r.t. processes that are suspended on conditions)
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Implementation through semaphores
• A semaphore MUTEX init at 1 (to guarantee mutex in the monitor)
• For every condition C, a semaphore SEMC init at 0 and an integer NC init at 0 (to store and 

count the number of suspended processes on the given condition)
• A semaphore PRIO init at 0 and an integer NPR init at 0 (to store and count the number of 

processes that have performed a signal, and so have priority to re-enter the monitor)

1. Every monitor operation starts with   MUTEX.down()   and ends with
  if NPR > 0 then PRIO.up() else MUTEX.up()
2.    C.wait() :=
 NC++
 if NPR > 0 then PRIO.up() else MUTEX.up()
 SEMC.down()
 Nc--
 return
3.   C.signal() :=
 if NC > 0 then NPR++
        SEMC.up()
   PRIO.down()
   NPR--
 return
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Rendez-vous through monitors
Rendez-vous is a concurrent object associated to m control points (one for every 

process involved), each of which can be passed when all processes are at their 
control points.

The set of all control points is called barrier.

  monitor RNDV :=

   cnt ∈ {0,…,m} init at 0

   condition B

   operation barrier() :=

    cnt++

    if cnt < m then B.wait()

         else cnt ß 0

    B.signal()

    return
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Dining Philosophers (Dijkstra, 1965)

• N philosophers seated around a circular table
• There is one chopstick between each pair of 
      philosophers
• A philosopher must pick up its two nearest 
      chopsticks in order to eat 
• A philosopher must pick up first one 
     chopstick, then the second one, not both at 
     once 

PROBLEM: Devise a deadlock-free algorithm for allocating these limited resources 
(chopsticks) among several processes (philosophers). 12



A non-deadlock-free solution
A simple algorithm for protecting access to chopsticks: 
 each chopstick is governed by a mutual exclusion semaphore that prevents any 

other philosopher from picking up the chopstick when it is already in use by 
another philosopher 

  semaphore chopstick[5] initialized to 1 

 Philosopher(i) := 

  while(1) do
   chopstick[i].down()
   chopstick[(i+1)%N].down()

   // eat 

   chopstick[(i+1)%N].up() 

   chopstick[i].up()

Guarantees that no two neighbors eat simultaneously, i.e. a chopstick can only be used 
by one its two neighboring philosophers 
We can have deadlock if all philosophers simultaneously grab their right chopstick

13



Deadlock-free solutions
Break the symmetry of the system: 
• All philosophers first grab their left-most chopstick, apart from one (e.g., the last 

one) that first tries to grab the right-most one
• odd philosophers pick first left then right, while even philosophers pick first right 

then left 
• allow at most n-1 philosophers at the same table when there are n resources 

We shall also see a solution where symmetry is not broken
• allow a philosopher to pick up chopsticks only if both are free. This requires 

protection of critical sections to test if both chopsticks are free before grabbing 
them. 

  à this will be easily implemented through a monitor
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Solution 1
Give a number to forks and always try with the smaller
 à all philosophers first pick left and then right, except for the last one that
      first picks right and then left.

semaphores fork[N] all initialized at 1; 

Philosopher(i) := 

 Repeat 

  think; 

  if (i < N-1) then 

   fork[i].down(); 

   fork[i+1].down(); 

  else 

   fork[0].down(); 

   fork[N-1].down(); 

  eat;
 fork[(i+1)%N].up(); 

  fork[i].up(); 
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Solution 2
Odd philosophers first pick left and then right, even philosophers first pick right and 

then left.

semaphores fork[N] all initialized at 1; 

Philosopher(i) := 

 Repeat 

  think; 

  if (i % 2 == 0) then 

   fork[i].down(); 

   fork[(i+1)%N].down(); 

  else 

   fork[(i+1)%N].down(); 

   fork[i].down(); 

  eat;
 fork[(i+1)%N].up(); 

  fork[i].up(); 
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Solution 3
Allow at most N-1 philosophers at a time sitting at the table

semaphores fork[N] all initialized at 1

semaphore table initialized at N-1

Philosopher(i) := 

 Repeat 

  think; 

  table.down(); 

  fork[i].down();
 fork[(i+1)%N].down(); 

  eat;
 fork[(i+1)%N].up(); 

  fork[i].up();
 table.up() 
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Solution 4
Pick up 2 chopsticks only if both are free 
• a philosopher moves to his/her eating state only if both neighbors are not in their 

eating states 
 à need to define a state for each philosopher 
• if one of my neighbors is eating, and I’m hungry, ask them to signal me when 

they’re done 
 à thus, states of each philosopher are: thinking, hungry, eating 
 à need condition variables to signal waiting hungry philosopher(s) 

This solutoin very well fits with the features of monitors!
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Solution 4
monitor DP 
 status state[N] all initialized at thinking; 
 condition self[N]; 

 Pickup(i) :=
 state[i] = hungry;
 test(i);
 if (state[i] != eating) then self[i].wait; 

 Putdown(i) := 
  state[i] = thinking; 
  test((i+1)%N); 
  test((i-1)%N); 

test(i) :=

  if (state[(i+1)%N] != eating && state[(i-1)%N] != eating

     && state[i] == hungry)

  then state[i] = eating; 

   self[i].signal();
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Software Transactional Memory
• Group together parts of the code that must look like atomic, in a way that is transparent, 

scalable and easy-to-use for the programmer
• Differently from monitors, the part of the code to group is not part of the definition of the 

objects, but is application dependent
• Differently form transactions in databases, the code can be any code, not just queries on the 

DB

Transaction: an atomic unit of computation (look like instantaneous and without overlap with 
any other transaction), that can access atomic objects.
 à Assumption: when executed alone, every transaction successfully terminates.

Program: set of sequential processes, each alternating transactional and non-transactional code 
(that both access base objects)

STM system: online algorithm that has to ensure the atomic execution of the transactional code 
of the program.
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Software Transactional Memory
To guarantee efficiency, several transactions can be executed simultaneously (the so called 
optimistic execution approach), but then they must be totally ordered
 à not always possible (e.g., when there are different accesses to the same obj, with
     at least one of them that changes it)
 à commit/abort transactions at their completion point (or even before)
  à in case of abort, either try to re-execute or notify the invoking proc.
  à possibility of unbounded delay
Conceptually, a transaction is composed of 3 parts:

[READ of atomic reg’s] [local comput.] [WRITE into shared memory]
The key issue is ensuring consistency of the shared memory
 à as soon as some inconsistency is discovered, the transaction is aborted
Implementation: every transition uses a local working space
• For every shared register: the first READ copies the value of the reg. in the local copy; successive READs 

will then read from the local copy
• Every WRITE modifies the local copy and puts the final value in the shared memory only at the end of the 

transaction (if it has not been aborted)
4 operations: * beginT() : initializes the local control variables
  * X.readT() , X.writeT() : as described above
  * try_to_commitT() : decides whether a non-aborted trans. can commit
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A Logical Clock based STM system
Let T be a transaction; its read prefix is formed by all its successful READ before its possible abortion.
An execution is opaque if all committed transactions and all the read prefixes of all aborted 

transactions appear if executed one after the other, by following their real-time occurrence order.

We now present an atomic STM system, called Transactional Locking 2 (TL2, 2006):
• CLOCK is an atomic READ/FETCH&ADD register initialized at 0
• Every MRMW register X is implemented by a pair of registers XX s.t.
• XX.val contains the value of X
• XX.date contains the date (in terms of CLOCK) of its last update
• It is associated with a lock object (to guarantee MUTEX when updating the shared memory)

• For every transaction T, the invoking process maintains
• lc(XX) : a local copy of the implementation of reg. X
• read_set(T) : the set of names of all the registers read by T up to that moment
• write_set(T) : the set of names of all the registers written by T up to that moment
• birthdate(T) : the value of CLOCK(+1) at the starting of T

Idea: commit a transaction iff it could appear as executed at its birthdate time
Consistency:
• If T reads X, then it must be that XX.date < birthdate(T)
• To commit, all registers accessed by T cannot have been modified after T’s birthdate (again, XX.date < 

birthdate(T))
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A Logical Clock based STM system
beginT() :=    X.writeT(v) :=

 read_set(T), write_set(T) ß ∅     if lc(XX)=⊥ then lc(XX) ß newloc

 birthdate(T) ß CLOCK+1     lc(XX).val ß v

         write_set(T) ß write_set(T) ∪ {X}

X.readT() :=    try_to_commitT() :=

 if lc(XX)≠⊥ then return lc(XX).val    lock all read_set(T) ∪ write_set(T)
 lc(XX) ß XX       ∀ X ∈ read_set(T)
 if lc(XX).date ≥ birthdate(T) then ABORT if XX.date ≥ birthdate(T)

 read_set(T) ß read_set(T) ∪ {X}  then release all locks

 return lc(XX).val         ABORT

         tmp ß CLOCK.fetch&add(1)+1

         ∀ X ∈ write_set(T)
       XX ß ⟨lc(XX).val , tmp⟩
         release all locks

         COMMIT

Remark: to avoid deadlock, there is a total order on the registers and locks are required by respecting 
this order (the deadlock is avoided as in Solution 1 of the Dining Philosophers)
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Atomicity
When operations are made atomic (i.e., indivisible), programming concurrent applications becomes 
easier.
 à how can we turn a non-atomic execution into an atomic one (if possible)?

We have a set of n sequential processes p1,…,pn that access m concurrent objects X1,…,Xm by 
invoking operations of the form  Xi.op(args)(ret). 

When invoked by pj, the invocation  Xi.op(args)(ret)  is modeled by two events: 
  inv[Xi.op(args) by pj]    and    res[Xi.op(ret) to pj].

A history (or trace) is a pair "𝐻 = (H , <H) where H is a set of events and <H is a total order on them

The semantics (of systems and/or objects) will be given as a set of traces.

A history is sequential if it is of the form   inv res inv res … inv res inv inv inv …  (where every res 
is the return operation of the immediately preceeding inv)
 à a sequential history can be represented as a sequence of operations

A history is complete if every inv is eventually followed by a corresponding res, partial otherwise.
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Linearizability
Def.: a complete history "𝐻	is linearizable if there exists a sequential history %𝑆	s.t.
1. ∀ X . %𝑆|X ∈ semantics(X)
2. ∀ p . "𝐻|p = %𝑆|p
3. If res[op] <H inv[op’], then res[op] <S inv[op’]

Given an history (𝐾, we can define a binary relation on events  ⟶K  s.t. (op, op’) ∈ ⟶K   if and only if  
     res[op] <K inv[op’]. We write  op ⟶K op’  for denoting  (op, op’) ∈ ⟶K.
Hence, condition 3 of the previous Def. requires that  ⟶H ⊆ ⟶S .

EXAMPLE: Let Q be a queue; let p1 and p2 be such that
       Q.enq(a)   Q.enq(b)       Q.deq -> b

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> a

This corresponds to the history
 inv[Q.enq(a) by p1] inv[Q.enq(c) by p2] res[Q.enq() to p1] inv[Q.enq(b) by p1]
 res[Q.enq() by p2] res[Q.enq() by p1] inv[Q.deq() by p2] inv[Q.deq() by p1]
 res[Q.deq(a) to p2] res[Q.deq(b) to p1]
It can be linearized as [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.enq(c)() by p2] [Q.deq()(a) to p2] 
     [Q.deq()(b) to p1]
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Linearizability (cont.’d)
Now consider
       Q.enq(a)   Q.enq(b)       Q.deq -> a

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> c

The corresponding history can still be linearized as 
             [Q.enq(c)() by p2] [Q.enq(a)() by p1] [Q.enq(b)() by p1] [Q.deq()(c) to p2] [Q.deq()(a) to p1]

By contrast, the following are not linearizable histories:
       Q.enq(a)   Q.enq(b)       Q.deq -> a

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> a

       Q.enq(a)   Q.enq(b)       Q.deq -> b

 p1 --|--------|---|--------|-----------|----------|------> 

 p2 --------|--------|-----------|-----------|------------> 

             Q.enq(c)         Q.deq -> c
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Thm (compositionality): !𝐻 is linearizable if !𝐻|X is linearizable, for all X involved in H
Proof (sketch):
For all X, let #𝑆X be a linearization of !𝐻|X
 à #𝑆X defines a total order on the operations on X (call it ⟶X)

Let  ⟶  denote   ⟶H  ∪  ∪X in H ⟶X  (recall that a relation is a set of pairs, so here you

      take the union of all pairs of ⟶H and of all ⟶X ) 
It can be proved that  ⟶  is acyclic (it is a DAG).

Every DAG admits a topological order (i.e., a total order of its nodes that respects the edges)
   à   Let  ⟶’  denote a topological order for  ⟶
          (with op1 ⟶’ op2 ⟶’ …)

We can then prove that the following is a linearization of !𝐻:
  #𝑆 = inv(op1) res(op1) inv(op2) res(op2) …
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Example (of compositionality)
      Q.enq(a)       S.push(d)

 p1 --|--------|-----|---------|--------------> 
        Q.enq(b)      Q.deq -> b
 p2 --------|----------|---|-----------|------> 
      S.push(c)       S.pop -> c

  p3 --------|---------|------|----------|-----> 

   S.pop->c   Q.deqàb

  S.push(c)
    S.push(d)
      Q.enq(a)

        Q.enq(b)
TWO POSSIBLE LINEARIZATIONS:
1. Q.enq(b) , Q.enq(a) , S.push(d) , S.push(c) , Q.deq->b , S.pop->c
2. Q.enq(b) , Q.enq(a) , S.push(d) , S.push(c) , S.pop->c , Q.deq->b
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An alternative to Atomicity
Sequential consistency

Let us define  op ⟶proc op’ to hold whenever there exists a process p that issues both operations 
(with  res[op]  happening before  inv[op’]).

Def.: a complete history "𝐻	is sequentially consistent if there exists a sequential history %𝑆	s.t.
1. ∀ X . %𝑆|X ∈ semantics(X)  (like linearizability)
2. ∀ p . "𝐻|p = %𝑆|p   (like linearizability)
3. ⟶proc ⊆ ⟶S   (in place of ⟶H ⊆ ⟶S)

This is a more generous notion than linearizability.

EXAMPLE: Let "𝐻	be [Q.enq(a)() by p1] [Q.enq(b)() by p2] [Q.deq()(b) to p2]
 à not linearizable:   ∎ the only possible linearization of "𝐻	is "𝐻	itself (because of cond.3) 
        ∎ it violates the semantics of a queue (cond.1)
 à it is sequentially consistent, by swapping the first two actions, i.e. by considering %𝑆	 to be 
      [Q.enq(b)() by p2] [Q.enq(a)() by p1] [Q.deq()(b) to p2]
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An alternative to Atomicity
The problem with sequential consistency is that it is NOT compositional.

EXAMPLE
Consider the following two processes:

 p1: Q.enq(a) ; Q’.enq(b’) ; Q’.deq()àb’ 
 p2: Q’.enq(a’) ; Q.enq(b) ; Q.deq()àb

In isolation, both processes are sequentially consistent
However, no total order on the previous 6 operations respects the semantics of a queue:
• If p1 receives b’ from Q’.deq, we have that Q’.enq(a’) must arrive after Q’.enq(b’)
• To respect ⟶proc , also the remaining behaviour of p2 must arrive after
• Hence, Q.enq(a) arrived before Q.enq(b) and so it is not possible for p2 to receive b from its 

Q.deq

Hence, we have two histories that are sequentially consistent but whose composition cannot be 
sequentially consistent à no compositionality!
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